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To ask for help or not to ask: A predictive approach to

human-in-the-loop motion planning for robot manipulation tasks

Rafael Papallas and Mehmet R. Dogar

Abstract— We present a predictive system for non-prehensile,
physics-based motion planning in clutter with a human-in-
the-loop. Recent shared-autonomous systems present motion
planning performance improvements when high-level reasoning
is provided by a human. Humans are usually good at quickly
identifying high-level actions in high-dimensional spaces, and
robots are good at converting high-level actions into valid robot
trajectories. In this paper, we present a novel framework that
permits a single human operator to effectively guide a fleet
of robots in a virtual warehouse. The robots are tackling the
problem of Reaching Through Clutter (RTC), where they are
reaching onto cluttered shelves to grasp a goal object while
pushing other obstacles out of the way. We exploit information
from the motion planning algorithm to predict which robot
requires human help the most and assign that robot to the
human. With twenty virtual robots and a single human-operator,
the results suggest that this approach improves the system’s
overall performance compared to a baseline with no predictions.
The results also show that there is a cap on how many robots can
effectively be guided simultaneously by a single human operator.

I. INTRODUCTION

We consider the problem of a fulfilment centre where a

large number of semi-autonomous robots are reaching through

clutter on shelves to grasp a goal object. Since the shelves are

cluttered, the robots use non-prehensile manipulation to push

movable obstacles away while reaching for the goal object.

The robots start to tackle the problems autonomously. As

this is a kinodynamic problem, it requires physics-based

search in a high-dimensional state space and, therefore,

some instances of the problem are extremely difficult for

autonomous robots. In these cases, a human operator is

available to provide help with high-level reasoning to alleviate

the computational burden for the robots. The human, through a

graphical user interface, possibly remotely, inspects the scene

and suggests a high-level action (for example, push this object

to this region). The robot leverages the input and integrates it

in its motion planning algorithm and continues autonomously.

An interesting question is, when should the robots ask for

human help? Can different solutions to this problem lead to

better performance in a multi-robot guidance setting?

A. When to ask for human help?

In our previous works [1], [2] we explored two possible

answers to this question. The most naive solution is to always
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Fig. 1: Twenty robots guided in parallel by a human in a vir-

tual warehouse. Robots autonomously reach for the green ob-

ject, but might require human help. Each robot estimates “how

much” it will benefit from human help, and the “Allocator”

allocates the human to the robot that will benefit the most. The

human provides a high-level input (“push this object here”),

the robot leverages the input and disengages with the human.

ask for help before planning [1]. This can help robots in all

scenarios, since the human will engage with all problems,

but if the human is unavailable, possibly helping other robots,

robots will be waiting unnecessarily. A better solution is to

let robots solve problems autonomously and fallback to a

human only when they cannot [2]. The obvious advantage is

that the robots will solve trivial problems autonomously and

only fallback to a human when they are faced with non-trivial

problems. A disadvantage, however, is that, sometimes, it can

take a while for an autonomous planner to fail and asking

for human help earlier can improve the robot’s performance.

In this paper, we are proposing a new solution that com-

bines the desired property of the first solution, employing

human input early, and the desired property of the second solu-

tion, allowing robots to tackle trivial problems autonomously.

We propose a predictive approach that much before the

autonomous planning algorithm gets stuck, predicts whether

the planning will fail, and, therefore, employs the human

without losing productive time. This requires predicting the

performance of the autonomous planner in a given scene. An

important question is what to predict?

B. What to predict?

One answer is to predict a binary value; given a scene,

predict the success or failure of the autonomous planner,

making this a classification problem. Although this could

work, in this work we are interested in the problem where

tens of robots are all working in parallel in a warehouse under

the supervision of a single human operator. At some point,



a classification algorithm could suggest a number of robots

that are “failing”, and therefore requiring human help. Which

one should the human help? Therefore, a better approach is

to frame this as a regression problem, and predict/estimate

how much the robot will benefit from human help. This way,

the estimate can be used to sort the requests and assign the

human to robots that will benefit the most.

Consider Fig. 1 as an example. There are twenty robots,

all of which are solving Reaching Through Clutter (RTC)

problems. They attempt to reach and grasp the green object,

while pushing the red ones out of the way. Most of the

robots are able to solve the tasks autonomously, however,

the system predicts that robot 2, robot 4 and robot 8 would

significantly benefit from human help. The system identifies

which robot will benefit the most from human help (robot

4) and assigns it to the operator. The human operator, over

a remote site, inspects the scene on a screen and quickly

identifies a high-level action (e.g., “push object 1 to that

region”), the robot integrates the high-level input into its

motion planning algorithm, the human disengages with robot

4 and becomes available for other robots.

C. Challenges and Motivation

Reaching Through Clutter (RTC) is a challenging problem

for multiple reasons, as shown in the Amazon Picking Chal-

lenge [3]. In this competition, even with relaxed assumptions,

autonomous systems struggled to solve hard RTC problems.

The difficulty of the task arises mainly for the following

reasons: First, the robot needs to reason about its own state

as well as the state of objects in the environment in a

high-dimensional state-space. Second, this is a problem that

requires the use of physics simulation to predict the state

of the system after a robot action. Physics simulation in

such cluttered scenes is computationally expensive to run.

Additionally, the RTC problem is NP-Hard [4]. Finally, this

is an under-actuated system, as the robot needs to find the

correct controls to change the state of movable objects.

Despite these challenges, RTC problems arise frequently

in real-world environments like our houses (e.g., retrieve an

object from a fridge or a shelf) or in e-commerce applications

(e.g., robots in warehouses reaching onto shelves to grasp

objects), and, therefore, have the potential for near-term

impact to home/service and warehouse robotics.

This paper is structured as follows. First, in Sec. II we

review related work and in Sec. III we formulate the problem.

We describe the proposed framework, Predictive Guided

Framework (PGF), in Sec. IV. In Sec. V we describe the

prediction models, and finally, in Sec. VI we evaluate PGF

in a simulated warehouse comprised of up to thirty robots

guided in parallel by a single human operator.

The contributions of this work are (1) a predictive frame-

work that allows a robot to realise the difficulty of a problem

before productive time is wasted and (2) the integration of

this predictive approach in a motion planning algorithm with

a human-in-the-loop. Finally, we provide public access to the

source code as well as to the scene configurations1.

1https://github.com/rpapallas/PGF

II. RELATED WORK

An important area, related to this paper, is sliding-autonomy.

In this line of work, a system can incorporate human in-

tervention when needed and adjust its level of autonomy

automatically [5]–[8]. Swamy et al [5], for example, proposed

a shared-autonomy approach that tries to learn to assign to the

human the robot that they would have chosen to operate. The

approach works by observing the human operating a small

number of robots and then trying to fit a model to explain

the user’s choices based on an internal scoring function. This

approach addresses simple tasks. Learning a scoring model for

real-world problems, like RTC, might be challenging. We take

a similar approach but trying to predict the optimisation cost.

At the core of this paper are motion planning algorithms.

They can generally be divided into three classes. Sampling-

based planners [1], [9]–[14], trajectory optimisation-based

planners [2], [15]–[20] and learning-based planners [21]–

[26]. In this work, we are particularly interested in trajectory

optimisation-based planners. In these algorithms, motion

planning is formulated as an optimisation problem, where a

cost function is defined over the trajectory and the planning

is framed as the optimisation of its cost. Specifically, we use

a similar motion planner to the one in our previous work [2]

which is based on STOMP [16].

Although autonomous motion planning algorithms have

seen success to various problems, for hard instances of the

problem (i.e., high-dimensional kinodynamic state spaces)

they struggle to find a solution. Human-in-the-loop systems

demonstrated to be effective for various tasks, including

geometric path planning [27], perception [28], [29], and

grasping [30], [31]. This is mainly because humans are good

at high-level reasoning [1], [2], [31]–[33], and is hard to

derive one autonomously, in high-dimensional spaces.

Other works looked into failure recovery systems. Sankaran

et al. [34], present a state machine-based failure recovery

system with shared autonomy that can query a user when

other autonomous solutions are exhausted. Although this is

practical, in cases of trajectory optimisation-based motion

planning, it can take a while for a robot to fail. Islam et

al. [35] take a similar approach, where a Multi-Heuristic A*

motion-planning algorithm is used to autonomously solve a

motion planning problem. They propose a heuristic-based

approach to estimate when a robot is in a “stagnation” region

so they can query a human for guidance.

All the aforementioned works present interesting ways

to deal with similar problems, however, all the robots act

individually, ignoring the fact that the human is supervising

multiple robots.

III. PROBLEM FORMULATION

We consider a system in a fulfilment warehouse centre. The

system comprises r robots reaching onto r shelves to fulfil a

total of m Reaching Through Clutter (RTC) tasks within T

seconds. Once the robot completes an RTC task, it moves to

the next one, until T seconds elapsed. The system also consists

of a remote human operator that is available to provide high-

level guidance to the r robots. At any time t ∈ T , the robots



might require help from the human. Furthermore, the human

high-level input impacts the underlying motion planner.

We measure the performance of the system based on the

success rate and the average planning time it takes to complete

the tasks. As the number r increases, at some t ∈ T , there

will be an increase in the number of robots requiring human

help. We assume that out of these robots, one will benefit the

most from immediate human help. Therefore, at any given

time, we want to assign to the human operator the robot that

will benefit the most from his input.

To do this, we would like to predict which robots are likely

to fail, if any, and estimate a value that indicates how useful

human input will be for each. We refer to this value as the

robot gain from human input, or simply the robot gain.

Since human input is directly integrated to the motion

planning algorithm, the prediction needs to happen at the

motion planning level.

A. Motion planning formulation

Each robot environment comprises nobj movable objects

O and other static obstacles (e.g., walls). We also have the

goal object to reach, og ∈ O.

The state of the robot is denoted by xr = (qr, q̇r) ∈ X r.

qr ⊂ SE(2) is the robot’s configuration and q̇r is the robot’s

velocities. Since the robot is working through clutter and

cannot reach from the top, we assume that the robot motion

is constrained to the plane and hence we simplify its config-

uration space to SE(2).
Similarly, we denote the state of a movable obsta-

cle j ∈ {1, . . . , |O|} with xj = (qj , q̇j , q̈j) ∈ X j where

qj ⊂ SE(2) is the object’s configuration and q̇j and q̈j the

object’s velocities and accelerations respectively. The state

space of the entire system, XE , is given by the Cartesian

product: XE = X r ×X 1 ×X 2 × · · · × X |O|.

The robot’s control space is denoted by U and comprises

the linear and angular robot velocities denoted by ut ∈ U

applied at time t for a fixed duration ∆t. The state of the envi-

ronment at time t is given by xt = {x
r, x1, . . . , x|O|} ∈ XE .

The discrete time dynamics of the system are given by

xt+1 = f(xt, ut) where f is implemented by a physics sim-

ulator.

We assume a trajectory optimisation-based motion planner,

and we have a trajectory τ = ⟨u0, u1, . . . , un−1⟩ of n steps.

We say that we rollout a trajectory τ using f from an initial

state x0 ∈ X
E using a rollout function R(x0, τ) to obtain

a sequence of states s = ⟨x0, . . . , xn⟩. We also have a cost

function C(s) to compute the cost of the state sequence. The

trajectory optimisation-based motion planner using the cost

function, C, will be reducing the cost at every iteration by

updating the control sequence. The cost function has different

terms to compute the cost of the trajectory say cix, c
i
y, . . . , c

i
z .

We define the total cost at iteration i as ci which is the sum of

the cost terms of the cost function: ci = cix + ciy + · · ·+ ciz .

B. Prediction formulation

We denote the optimisation state Ostate as

⟨nobj, ⟨c
i−p
x , ci−p

y , . . . , ci−p
z ⟩, . . . , ⟨cix, c

i
y, . . . , c

i
z⟩⟩. Where

nobj is the number of objects in the environment and

⟨ci−p
x , ci−p

y , . . . , ci−p
z ⟩ represents the cost breakdown at

iteration i−p, before human input. Ostate essentially represents

the cost breakdown history over the last p iterations. Ostate

captures the complexity of a given optimisation problem in

the last p iterations.

We define two prediction models ϕhuman and ϕauto that

predict the cost of the optimisation. The former, given the

state of the optimisation algorithm, Ostate, at iteration i, it

predicts the total cost ci+l
human representing the predicted cost

of the optimisation l iterations in the future, assuming human

input was provided. The latter, ϕauto, given the state of

the optimisation algorithm, Ostate, at iteration i, it predicts

the total cost ci+l
auto representing the predicted cost of the

optimisation l iterations in the future, assuming no human

input was provided. The robot gain is simply the difference

between the two predictions. These two prediction models

attempt to estimate how the optimisation would evolve in

future iterations if human help is provided and if human help

is not provided.

IV. THE PREDICTIVE GUIDED FRAMEWORK (PGF)

In this section, we introduce the Predictive Guided Frame-

work (PGF). First, in Alg. 1, we describe the overall frame-

work based on trajectory optimisation with a human-in-the-

loop. In Sec. IV-A we describe how the human input is

captured. In Sec. IV-B, we describe the cost function of the

trajectory optimisation-based solver and in Sec. IV-C we

describe how we construct the initial trajectories. Finally, in

Sec. IV-D, we describe the allocator function that allocates a

robot to a human.

Algorithm 1 Predictive Guided Framework

1: procedure PGF

2: x0 ← initial state of the system

3: τ ← init trajectory as a straight line to the goal

4: while τ not feasible do

5: s← R(x0, τ)
6: cid, c

i
f , c

i
b ← C(s)

7: g ← PREDICT(Ostate)

8: humanAssigned ← ALLOCATOR(g)

9: if humanAssigned then

10: input ← obtain input from human

11: update cost function C based on input

12: update τ based on input

13: continue to line 5

14: sample k noisy trajectories from τ

15: rollout each of the k trajectories from x0 using R

16: obtain cost for each rollout using C
17: τ ← trajectory with the lowest cost

18: execute τ

Alg. 1 describes the algorithm each robot is using to solve

RTC problems. Each robot starts with observing the initial

state (line 2). It then generates τ , a straight line trajectory to

the goal object in line 3 (more details in Sec. IV-C). Then, in



a while loop, until a feasible trajectory is found (or until time-

limit exceeded), the solver starts to optimise the trajectory.

Initially, the solver rolls out the initial trajectory to obtain

a sequence of states (line 5). It then obtains the current

cost breakdown of the rollout (line 6). In line 7 we use the

optimisation state, Ostate (see Sec. III-B), to predict the robot

gain g (more details in Sec. V-C). The predicted gain, g, is

then given to the ALLOCATOR function (line 8) which decides

if the robot will get human help. If the allocator decides that

the current robot should be assigned to the human (line 9), the

solver stops and the robot asks for human help. The human

is prompted for input (line 10) and the input is integrated in

the optimiser (lines 11 and 12). We describe how the input

is integrated from Secs IV-A to IV-C. Then we continue to

line 5 (line 13).

If human input is not required, then we sample k noisy

trajectories from τ (line 14). To create these k trajectories,

we add Gaussian noise to the controls of τ using N (0, v)
where N is the Gaussian distribution and v is the variance for

a degree-of-freedom of the robot. We then rollout each of the

k trajectories (line 15) and obtain the cost for each (line 16)

and keep the trajectory with the lowest cost (line 17).

A. Human Input

In Alg. 1 between lines 10 and 12, we integrate the provided

human input to the cost function and we also update the

trajectory, τ . The high-level input, provided by the human

operator, suggests a particular object, oj , to be pushed to a

particular region on the plane. We can formalise the human

input as the triple (oj , xj , yj), where oj ∈ O is an object and

(xj , yj) is a point on the plan that oj needs to be pushed to.

The user provides the input (Alg. 1 line 10) using a Graphical

User Interface (GUI). The GUI is depicted in Fig. 1. The

user is presented with a view of the scene in the simulator

(that replicates the real-world configuration). The user uses

the mouse pointer to first select oj and then the point on the

plane. Now that we defined the human input, we can describe

PGF’s cost function.

B. Cost Function

The cost function is used in Alg. 1 in line 6 and is also

updated in line 11.

1) No human input provided: If no human-input is pro-

vided, the cost function for a state sequence s is defined as

C(s) = cd + cf + cb:

• cd = wd · d(q
ee,qg): The Euclidean distance from the

robot’s end-effector to the goal object og .

• cf (xi) =
∑|O|

j=1
wf · F (xj

i ): For a state xi, we penalize

any movable object that applies high forces to any other

movable or static obstacle. F is a function that, given

a state of an object x
j
i , returns the contact forces of

that object. In our implementation, F is provided by a

physics simulator.

• cb(xi) =
∑|O|−1

j=1
wb ·1b(xn,q

ee,qi): We check if there

is a blocking obstacle in the robot’s end-effector in the

last state of the state sequence (xn). 1b is an indicator

(a) Reaching goal object (b) Pushing an object

Fig. 2: Initial trajectories. The arrow illustrates the trajectory.

In (b) the object to be pushed is the box the arrow penetrates.

function that returns 1 if the robot has an obstacle in

the hand, 0 otherwise.

The first cost term, cd, is defining how close the robot is

to grasp the desired object and is, therefore, indicating if the

robot is grasping the goal object at the end of the trajectory.

To avoid trajectories that forcefully push objects against static

obstacles, we use the second term, cf . The third term, cb
encourages the planner to find trajectories that do not get

blocking obstacles in the robot’s hand. This cost function

(including their parameters, which we report in the results

section) was experimentally chosen and provided a good cost

function for the problem of Reaching Through Clutter.

2) Human input provided: If human input is provided

(Alg. 1, line 10), we update the cost function (line 11) to

integrate the input in the optimisation. The update is two-fold,

we first push the operator’s indicated object to the desired

position using C(s) = ch + cf + cb and then we reach for

the goal object using C(s) = cd + cf + cb.

ch = wh · d(q
i
n,q

i
desired) (1)

For a high-level input (oi, xi, yi), ch is the weighted Eu-

clidean distance of oi position at the final state, qin, with the

user’s provided position, qidesired, of that object. This cost term

will encourage the solver to explore trajectories where the

object indicated by the human is pushed towards the desired

position.

C. Initial trajectories

In Alg. 1 line 3, we initialise a straight-line trajectory.

We use straight-line trajectories because they are cheap to

compute (no physics simulation is required) and they are

effective for RTC problems.

We depict two such initial trajectories in Fig. 2. The first

trajectory, Fig. 2a, is the initial trajectory for reaching the

goal object and is a straight line trajectory from the robot’s

current position to the position of the goal object. The second

trajectory, Fig. 2b, is the initial trajectory for pushing an object

to its desired position (that we update in Alg. 1, line 12).

This trajectory is following a straight line from the object’s

current position to its desired position.

We have now defined the components of the motion planner,

and next we will outline how PGF decides when to ask for

human help.



Algorithm 2 Allocator

1: function ALLOCATOR(gi)

2: if window not created then

3: create window for Twindow seconds

4: P ← P ∪ {gi}
5: if Twindow not elapsed then

6: wait until Twindow seconds elapsed

7: return gi == max (P )

D. Allocator

In Alg. 1 in line 8, we make a call to ALLOCATOR to check

if the robot can ask for human help. This function is described

in Alg. 2. The state of the allocator function is shared with all

robots, and it creates timed windows where robots join a pool

of robots that are “bidding” for human time. If a window is

not currently active, the system creates a window for Twindow

seconds (line 3). Robots join the active window, and they add

their estimated robot gain, gi to the P set (line 4). If the human

is currently busy, guiding a robot for example, the robots do

not join the window, and they continue autonomously until the

human becomes available again. Once a robot joins a window,

it waits for Twindow seconds (line 6) for other robots to join.

Finally, the robot with the highest robot gain is assigned to

the human (line 7). Ties are resolved randomly. To ensure

fairness in human time allocation and avoid starvation, when

the robot’s planner hits local minima, its gain is set to the

highest value to guarantee that the robot will get human time.

So far, we introduced the PGF framework that employs a

predictive approach to decide when to ask for human help

and the allocator that uses the predicted values to allocate

the appropriate robot to the human. In the next section, we

outline implementation details of the predictors.

V. PREDICTION MODELS

In this section, we describe the implementation of the

prediction models. For the problem of RTC we train two Deep

Neural Networks (DNNs) and use them as our prediction

models.

A. The prediction algorithm

Algorithm 3 Predictor

1: function PREDICT(Ostate)

2: ci+l
human ← ϕhuman(Ostate)

3: ci+l
auto ← ϕauto(Ostate)

4: g ← ci+l
auto − ci+l

human ▷ Predicted robot gain

5: return g

In Alg. 1 in line 7, we make a call to a PREDICT function.

This function is described in Alg. 3. Using two prediction

models ϕhuman and ϕauto, we predict two future costs. In line 2

we predict the total cost of the optimisation l iterations in the

future, assuming human input. In line 3 we predict the total

cost of the optimisation l iterations in the future, assuming

no human input. The algorithm then estimates the robot gain,

g (line 4). In line 5, we return g to Alg. 1 and line 7.

The predictors take as input the optimiser state, Ostate

(Sec. III-B). This optimiser state comprises the number of

movable objects, nobj, in the environment as well as the cost

history of the optimiser up to the current iteration. We found

that using the cost term from the last iteration alone, as input

to the model, was not enough to capture the complexity of a

problem, and instead we found it more successful to look at

the history of the cost.

It is noteworthy that the learned gain does not assume that

human input will always improve the problem (i.e., decrease

the cost). The gain will also capture when not to ask for

human help (i.e., learn the problems where human input is

not effective).

B. Structure of the datasets

We generated two different set of data. One dataset for

training ϕauto (Xauto, the autonomous dataset) and another

dataset for training ϕhuman (Xhuman, the human dataset).

The dataset for ϕauto consists of the optimisation cost break-

down per scene. We generated a number of distinct scenes (dif-

ferent rearrangements of the objects on the shelf) and ran the

PGF optimiser (without human intervention) to solve them and

collect data. We have the following autonomous training set:

Xauto = ⟨. . . , ⟨nobj, ⟨c
0
d, c

0
f , c

0
b⟩, . . . , ⟨c

m
d , cmf , cmb ⟩⟩, . . . ⟩

That is, for each scene, nobj is the number of objects in that

scene, and ⟨c0d, c
0
f , c

0
b⟩ is the cost breakdown at iteration 0

and m is the last iteration of the optimisation.

Similarly, the dataset for ϕhuman consists of the optimisation

cost breakdown per scene before and after human input. We

ran PGF over the scenes. We have the following human

training set:

Xhuman = ⟨. . . , ⟨nobj, ⟨c
0
d, c

0
f , c

0
b⟩, . . . , ⟨c

k
d, c

k
f , c

k
b ⟩,

⟨ck+1

d , ck+1

f , ck+1

b ⟩, . . . , ⟨cmd , cmf , cmb ⟩⟩, . . . ⟩

That is, for a scene, ⟨c0d, c
0
f , c

0
b⟩, . . . , ⟨c

k
d, c

k
f , c

k
b ⟩ is the cost

breakdown from iteration 0 to iteration k before human input.

⟨ck+1

d , ck+1

f , ck+1

b ⟩, . . . , ⟨cmd , cmf , cmb ⟩ is the cost breakdown

from iteration k+1 to iteration m after human input. nobj is

the number of objects in the scene and m is the last iteration

of the optimisation. The only difference here is that we have a

key iteration (iteration k+1) when human input was provided

and we treat the cost breakdown differently before and after

that point (i.e., the change in the cost after the human input).

C. Network architecture

The two sets, Xauto and Xhuman, are used to train ϕhuman

and ϕauto. We used Tensorflow for implementing both models

[36]. ϕauto and ϕhuman are two feed-forward deep neural

networks with the same architecture. After experimentation

with different architectures, the current architecture consists

of an input layer, three hidden layers and the output layer (the

cost l iterations in the future). The hidden layers contain 64,

32 and 8 neurons with reLU activation function respectively.



As mentioned in Sec. III, Ostate, is the optimisation

state which comprises the cost breakdown in the last

p iterations. In our implementation Ostate is defined as

⟨nobj, ⟨c
i−p
d , c

i−p
f , c

i−p
b ⟩, . . . , ⟨cid, c

i
f , c

i
b⟩⟩. Therefore, to train

these DNNs, we group the iterations in the Xauto and Xhuman

datasets into groups of p iterations per scene to predict the

total cost at iteration i + l. The input layer for the two

models, therefore, is the optimisation state Ostate. That is, the

p iterations and the cost breakdown for each. The output

layer for the two models is the total cost at iteration i+ l. In

our implementation, l = 10, that is, the cost we predict is 10

iterations in the future.

VI. EXPERIMENTS & RESULTS

In this section, we evaluate the performance of PGF in a

virtual warehouse with a different number of robots for the

problem of Reaching Through Clutter. As we explained in

Sec. I-A, there are three possible approaches to integrating

human high-level guidance to robotic planning:

1) Robots asking for guidance at the beginning of every

problem [1]. This has the disadvantage that it spends

valuable human operator time unnecessarily, even for

problems that can be solved autonomously.

2) A robot asking for guidance only if its autonomous

planner gets stuck. We implemented this approach in our

previous work [2], and named it OR-HITL. In that work,

our results showed that this approach outperforms (1)

above, showing similar planning performance, but with

significantly reduced human involvement. However, OR-

HITL waits for the autonomous planner to get stuck,

which can take a while.

3) The approach we present in this paper, PGF, which tries

to predict the benefit of human help, and, therefore,

recruit human for help earlier, before the autonomous

planner actually gets stuck.

Therefore, below, we compare PGF to OR-HITL, to test

our hypothesis that PGF will lead to using human guidance

in a similar amount with OR-HITL, but the overall planning

times (and therefore the overall number of tasks that are

completed by the robots in the warehouse) improve due to

PGF’s predictive power. PGF uses the predictive approach

to estimate which robot will benefit the most from human

help and assign that robot to the human first, while OR-HITL

queries the human when stuck in local minima and the human

is allocated to the first robot that gets stuck.

Next, we describe the experimental setup. Then, in Sec. VI-

B, we explain how we train the two prediction models, ϕhuman

and ϕauto. Finally, in Sec. VI-C, we evaluate the proposed

Predictive Guided Framework in a virtual warehouse with a

different number of robots.

A. Experimental setup

We trained the networks on a computer with Intel© Core™

i7-4790 CPU @ 3.60GHz, 16GB RAM. We use TensorFlow

2.0 [36] with Keras. The training batch size was 50 and use

Keras’ EarlyStopping callback for adaptive number of epochs.

We use the “Adam” optimiser with Root Mean Squared Error
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Fig. 3: ϕauto (left) and ϕhuman (right). The blue line is the

loss function (Root Mean Squared Error) on the training set,

and the orange line is the loss function on the validation set.

Fig. 4: Two instances of an RTC problem. The problem on

the left is challenging, and the robot is very likely to ask for

help, while the problem on the right is less challenging and

the robot might be able to solve it autonomously.

(RMSE) as the loss function. Twindow for ALLOCATOR was

2 seconds. We use a randomiser to generate problems. Each

problem consists of a scene with 20 movable objects on a

shelf and the robot. The randomiser shuffles the movable

obstacles in collision-free places including the goal object

but ensures that the goal object is always at the back row

of the shelf to create more challenging problems. We use

MuJoCo [37] and its C++ API to implement the system

dynamics. We use k = 8 noisy trajectories at each iteration,

variance of 0.04 m/s for the robot’s linear velocities and 0.04

rad/s for the robot’s angular velocity. We had 3 seconds long

trajectories with 8 steps each and the simulator’s integration

step size was 0.0015. Finally, the cost function’s parameters

are: wd = 4000, wf = 30, wb = 450 and wh = 300. All the

details can also be found in the provided code repository.

B. Training ϕhuman and ϕauto

For the human dataset, we collected data from 4 participants

(one is an author of the paper) by running the algorithm in

1,500 distinct scenes. The data collected were used to train

ϕhuman. For the autonomous dataset, we collected data from

4,000 distinct scenes to train ϕauto. In these 4,000 problems,

the robot tried to solve RTC problems fully autonomously,

without any human intervention. These datasets were split

80-20% for training and validation, respectively.

Figure 3 shows the training results. The error for the

autonomous predictor is much lower due to the availability

of more data points. The RMSE of the autonomous predictor

is 58.56 and for the human predictor is 157.49. To put these

numbers into a perspective, for the two scenes in Fig. 4 the

cost of the initial trajectory for the left and right problems is

749.56 and 0 (initial trajectory was feasible) respectively.



(a) g = 3.84 (b) g = 31.36 (c) g = 66.19

(d) g = 66.64 (e) g = 49.52 (f) g = 51.06

Fig. 5: Six robots (out of the twenty) requesting human help

at the same time. cgain is their predicted gain. Robot (d) has

the highest gain and, therefore, gets the human.
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Fig. 6: Planning times (left) and success rate (right) for PGF

(blue) and OR-HITL (orange) as the number of robots under

the supervision of a single human-operator increases. Error

shadow indicates the 95% Confidence Interval.

In the next section, using these prediction models, we

evaluate the complete system in a virtual warehouse with a

number of robots.

C. Coping with a fleet of demanding robots

Next, we set up a virtual warehouse2 of 1-30 robots picking

objects from shelves. We perform experiments with 1, 10, 20

and 30 robots under the human supervision, and compare how

the performance is impacted as we increase the number of

robots under the human supervision. Each robot was assigned

with 50 random RTC tasks to solve, except the experiments

with the single robot, where the robot was assigned to 100

random RTC tasks.

Some demonstration scenes are presented in Fig. 5. The

figure presents six robots, out of the twenty in the virtual ware-

house, that joined the same PGF window. g is the predicted

robot gain for each. High gain means that human input could

be more beneficial, while low robot gain means that the robot

could solve the problem autonomously. Among the six robots,

the robot in scene (d) was the one with the highest predicted

gain and the one assigned to the human. The baseline, OR-

HITL, solved scene (a) autonomously in 4 iterations, while it

solved autonomously scene (b) in 8 iterations. For scene (c),

OR-HITL hit a local minimum and queried the human on the

7th iteration and for scene (d), failed to solve the problem

2Using a powerful EC2 instance on Amazon Web Services ©: c5.24xlarge
with 96 vCPUs and 192GiB of RAM

altogether. For scene (e), OR-HITL solved it autonomously

in 20 iterations and in (f) hit a local minimum on the 4th

iteration and queried the human. In (c) the gain is higher

than (f) but the robot in (f) actually hits a local minimum on

the 4th iteration as opposed to the 7th iteration in (c). This

could be interpreted as that (f) is harder than (c). However, it

is important to highlight that (1) the gain captures also when

human input is not going to be useful (i.e., it might be that

the human input in (f) is not going to be as beneficial) and

(2) since this is stochastic optimisation, the iteration when a

robot hits local minima can vary between runs.

Next, we measure the performance of these systems and

present results in Fig. 6. Fig. 6-Left shows the average total

planning time each robot spent on an RTC problem. The data

suggest that the planning time of the robots increases as the

number of robots under the human supervision increases as

well, however, there is improvement in planning times when a

human supervises from 1 to 20 robots using the PGF system.

In these cases, the system correctly queried the human earlier

and, therefore, allowed the robots to receive high-level human

input earlier. The data suggest that once the number of robots

increases from 20 to 30 this improvement shrinks. A possible

explanation is that as the number of robots increases, there

are more robots waiting for help, but they never get the

human and, therefore, perform similar to OR-HITL (where

help comes much later or not at all).

The success rate is shown in Fig. 6-Right. The success rate

is the success percentage over all RTC problems each group

of robots encountered. If a robot do not find a solution for a

problem within 3 minutes, we consider the run a failure. The

data shows a similar trend, but in general the success rate of

both approaches is relatively high given the task difficulty.

Considering the total experiments, OR-HITL queried the

human on the 25th iteration on average, while PGF queried

the human on the 6th iteration on average. Finally, considering

the experiment with the group of 20 robots, out of the 1,000

total problems the 20 robots encountered, PGF assigned the

human to 307 of those (31% of the problems), while OR-HITL

assigned the human to 175 of those (18% of the problems).

Although there is an increase in human involvement with

more problems, this is still better than the naive approach [1]

that queried the human for 100% of the problems.

VII. CONCLUSIONS AND FUTURE WORK

We introduced the Predictive Guided Framework (PGF)

which, by incorporating predictions, is able to query the

human for help earlier, before valuable planning time is

wasted. The predictions allow to sort robot requests and

assign to the human the robot that will benefit the most. In a

virtual warehouse with 20 robots, the system shows significant

improvements compared to a baseline without predictions.

The results also show that there is a cap on how many robots

can effectively by guided by a single human.

Finally, the work can be improved in several ways. For

example, although we propose a way to predict the robot gain

using deep learning, we do not consider our contribution to

be in this domain. Our framework demonstrates that a good



prediction system is useful, but we acknowledge that there

could be better ways to learn the robot gain; here we present

one possibility. In the future, we will look into how we can

improve the predictions using different learning methods and

using different inputs to the prediction models.
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