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SUMMARY 

The equivalent force control method uses feedback control to replace numerical iteration and solve the 

nonlinear equation in a real)time hybrid simulation via the implicit integration method. During the real)time 

hybrid simulation, a time delay typically reduces the accuracy of the test results and can even make the 

system unstable. The outer)loop controller of the equivalent force control method can eliminate the effect 

of a small time delay. However, when the actuator has a large delay, the accuracy of the test results is 

reduced. The adaptive forward prediction method offers a solution to this problem. Thus, in this paper, the 

adaptive polynomial)based forward prediction algorithm is combined with equivalent force control to 

improve the test accuracy and stability. The new method is shown to give good stability properties for a 

specimen with nonlinear stiffness by analyzing the location of the poles of the discrete transfer system. 

Simulations with linear and nonlinear specimens are then presented to demonstrate the effectiveness of this 

method. Finally, experimental results with a linear stiffness specimen and a magneto)rheological (MR) 

damper are used to demonstrate that this method has better accuracy than the equivalent force control 

method with non)adaptive delay compensation.  

  

KEY WORDS: Equivalent force control; Adaptive polynomial)based forward prediction; Time delay; 

Stability; Accuracy 

 

 

1. INTRODUCTION 

Real)time hybrid simulation (RTHS) divides a structure into two parts: the critical element is taken as an 

experimental substructure, and the remainder of the structure is a numerical model in a computer. RTHS 

can be used to test full)scale specimens and estimate the dynamic performance of a structure relatively 

accurately [1)6].  

The numerical integration algorithm is important for RTHS. The integration algorithm is typically either 

an explicit integration algorithm [1,4)6] or an implicit algorithm [3]. Traditional explicit integration 

algorithms [1] have conditional stability criteria. However, some explicit integration algorithms with 

unconditional stability have been proposed recently [4)6]. For example, the LRST algorithm [5] has 

unconditional stability for linear structures, which can be extended to nonlinear structures using a 

calculation of the Jacobi matrix of the structure for each time step. The CR [6] and KR)α [4] methods have 

unconditional stability for linear elastic and stiffness softening)type nonlinear systems. The implicit 
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algorithm [3] is generally unconditionally stable but requires numerical iteration.  

Wu et al. [7, 8] proposed the equivalent force control (EFC) method, which solves the nonlinear equation 

of implicit integration via a so)called equivalent force feedback control to replace numerical iteration for 

RTHS. It uses the proportional plus derivative (PD) control as an outer controller. The PD control has a 

problem of steady)state error for nonlinear systems and the control system is easy to de)stabilize because of 

noise in the equivalent force (EF) feedback. These problems can be solved by using a proportional plus 

integral (PI) controller [9] or sliding mode control [10]. There is an equivalent force response delay in 

RTHS, which has an effect equivalent to negative damping [11]. The traditional solution [7, 8] is to increase 

the gain of the outer controller to cancel the time delay in the equivalent force response. However, a system 

with high controller gain is easier to destabilize because of the noise in the force and displacement 

responses. Thus, Shi et al. [12] used a Kalman filter to reduce the noise in the equivalent force response; as 

a result, the control gain can be set sufficiently high to cancel the time delay using this method.  

The time delay for large tonnage dynamic actuators is always typically in the region of 20)80 ms [9, 10]. 

To track the equivalent force command, the control gain typically needs to be set to a very large value such 

that the magnitude plot M(ω) of the open loop transfer function of the EFC system near the natural 

frequency of the structure is a peak, thus resulting in greater susceptibility to instability [13]. To address 

this limitation, this paper presents a method in which the time delay compensation is applied outside the 

equivalent force control loop. As a result, the compensation is not affected by the noise in the equivalent 

force response. To achieve this a polynomial)based forward prediction [14] is used to extrapolate the EF 

command, which can be considered an expansion of the polynomial)based forward extrapolation [11, 15]. 

Because the delay time of the equivalent force response varies slightly depending on the excitation 

frequency, amplitude and specimen nonlinearity [15], the adaptive algorithm proposed by Wallace et al. [14] 

is used to tune the forward extrapolation parameters online. This method also has the advantage of being 

suitable for nonlinear specimens, which is an important characteristic for hybrid testing. 

In fact, the development of adaptive algorithms to identify the time delay in RTHS tests has been 

considered by multiple other authors [16)21]. The adaptive polynomial)based forward prediction (AFP) 

algorithm was first proposed by Wallace et al. [14] to improve the stability and accuracy of RTHS for 

lightly damped systems [22]. Tu et al. [23] improved the AFP algorithm with respect to the settling 

performance and numerical conditions. To guarantee the stability, appropriate limiting values for the 

adaptive parameters ka and P are proposed in this paper. 

Other time delay compensation approaches typically use an inverse model compensation to cancel the 

dynamics of the transfer system, which are essentially implemented as a feedforward controller. They 

model the actuator)specimen as a first)order [3, 24] or third)order [2] model, respectively. The virtual 

coupling proposed by Christenson et al. [13] is a first)order inverse feedforward controller in essence, 

which was achieved by using a virtual structure concept.  

As a result of the nonlinearity in a specimen, the dynamic characteristics of the actuator may change 

significantly. Thus, Philips et al. [25] proposed a new model)based servohydraulic tracking control method 

including feedforward)feedback links to achieve accurate tracking of a desired displacement in real time, 

which is a development of model)based compensation [2]. Moreover, Chen et al. [26] applied an adaptive 

control scheme to a model)based feedforward)feedback controller to accommodate specimen nonlinearity. 

The robust integrated actuator control proposed by Ou et al. [27] can also be considered a 

feedforward)feedback link, in which the loop shaping feedback control based on H∞ optimization is used 

as the feedback controller.  

Liu et al. [28] used online delay estimation [15] to improve the performance of the model)based inverse 
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compensation. Chen et al. [29] proposed a dual compensation scheme, which designs an outer loop 

proportional controller to tune the inverse compensation procedure using the actuator tracking error. Chen 

et al. [30, 31] also proposed an adaptive inverse compensation method, which uses a PI controller to tune 

the inverse compensator using the tracking indicator (TI). The inverse compensation algorithms [3, 24)31] 

can also be used to improve the performance of the EFC. The procedure and principle of the EFC combined 

with the inverse compensation methods are similar to EFC combined with an AFP, which is not discussed 

further due to limited space. The purpose of the paper is to demonstrate that using EFC combined with AFP 

leads to a significant improvement in performance over EFC alone. Furthermore this combination also has 

very good performance when the experimental specimen is strongly nonlinear. 

This paper is arranged as follows: first, an introduction of the EFC is given. Second, the formulation of 

the EFC combined with an AFP is described. Then, the stability and accuracy of this new method is 

analyzed. Finally, numerical simulations and actual tests are described to demonstrate the performance of 

this method. 
 

2.  OVERVIEW OF EFC 

To study the equivalent force control method combined with an adaptive forward prediction (EFC)AFP), 

the formulation of the EFC [7] is introduced first. The equation of motion for a real)time hybrid simulation 

at step i+1 can be expressed in a time)discretized form as  

             ( )N 1 N 1 N 1 E 1 1 1 1( , , )
i i i i i i i+ + + + + + ++ + + = � � � � � � � � � �           (1) 

where   and � are the mass and damping matrices, respectively, � is the restoring force vector, 

�, ��and � are the displacement, velocity and acceleration vectors of the structure, respectively, 

and � is the excitation force vector. The subscript N denotes variables associated with the 

numerical substructure, and the subscript E denotes variables associated with the experimental 

substructure. It is assumed that the damping force is linearly proportional to the velocity and that 

�E is a function of the displacement, velocity and acceleration in general. 

With the Newmark constant)average)acceleration method, the time)discretized equations of the 

acceleration and velocity approximations are expressed as                           
2

1 12

4
( )

4i i i i i

t
t

t
+ +

�
= − − � − +

�
� � � � �

                       
(2)

              

1 1

2 2
i i i i

t t
+ += − − +

� �
� � � �

  
                         (3) 

where Ht is the integration time interval. Substituting Equations (2) and (3) into (1) gives 

N 1 PD 1 E 1 1 1 EQ, 1( ) ( , , )i i i i i i+ + + + + ++ + =� � ! � � � � � �             (4)
 

where  

N N
PD 2

4 2

t t
= +

� �
 �

!                         (5)            

N N N
EQ, 1 1 N N 2

4 4 2
( ) ( )

i i i i i
t t t

+ += + + + + +
� � �

  �
� �  � � � �           (6) 

where !PD is called the pseudodynamic stiffness [7]. �EQ,i+1 can be considered an equivalent 

force command that consists of the external force and the pseudodynamic effect and depends only 

on the previous step response. Equation (4) can be viewed as a hybrid dynamic equilibrium 

condition [7]. 

Equation (4) can also be interpreted as representing a hybrid force control system [7], in which the force 
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command is �EQ and the hybrid plant to be driven consists of the physical part �E and the numerical parts 

!PD and �N. Fig. 1 gives the control block diagram for a real)time hybrid simulation with an EFC. There 

are two controllers in Fig. 1. The inner one is the traditional displacement controller of the 

actuator)specimen system. The outer one is an EFC controller that is used to enforce the equilibrium 

condition presented in (4). Because the inner loop is controlled in displacement mode, the equivalent force 

error after regulation of the outer loop controller is transformed into a displacement command �c
i+1(t) by a 

conversion matrix �F. In this paper, �F=(!E+!N+!PD)−1, in which !E and !N are the initial stiffness of the 

experimental and numerical substructure, respectively. If the equivalent force response tracks the 

equivalent force command, the equilibrium condition given in (4) is satisfied, and the displacement 

command �c
i+1 is the correct solution for (4).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Block diagram of the EFC [7]. 
 

This process is the same as the modified iterative procedure [32]. An EFC controller calculates � in 

every sampling time step. The substep number is determined as k=Ht/ts, in which ts is the sampling time 

step. The sampling time step is 0.001 s for this system; the iteration numbers are the same as the substep 

number. For example, when the time step Ht is 0.01 s, the sampling time step ts is 0.001 s, and the iteration 

numbers are k=Ht/ts=10. EFC tries to get the approximate exact solution of the nonlinear function 

consistently with minimal error by designing the controller in an equivalent force control loop [8)10]. The 

convergence criterion for the EFC method is the equivalent force error between the equivalent force 

command and response. If the equivalent force error is equal to 0, convergence is assured. In actuality, the 

equivalent force error can only be close to 0 because of control error. Thus, a correction to displacement 

�i+1 is used, as shown in Equation (7). However, the convergence criteria cannot be satisfied in a time step 

when there is large time delay. Thus, the AFP algorithm is used outside the equivalent force control loop to 

compensate for the time delay and guarantee that the convergence criterion is satisfied. To ensure the 

equilibrium of Equation (4), the displacement �i+1 is updated [7] at the end of the time step, as described 

below. 

EQ, 1 E, +1
1

PD N

i i

i

+
+

−
=

+

� �
�

! !
                             (7) 

 

3．FORMULATION OF EFC COMBINED WITH AFP ALGORITHM 

�
m

EQ,i+1(t) 

�
c
i+1(t) 

+ 

+ 
+ 

!PD�
c
i+1 

�E,i+1 

�N,i+1 

!PD�

KN 

�EQ,i+1 �EQ,i+1 
EFC 

Controller 

�F 
+ +

Displacement 

Controller 
Actuator 

) ) 

�
m

i+1(t) 

Experimental 

substructure 
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The adaptive polynomial)based forward prediction algorithm was proposed by Wallace et al. [13] and is 

used herein to compensate for the time delay in the equivalent force system, as shown in Fig. 2. It is located 

outside the equivalent force control loop to compensate for the time delay of a RTHS test system. The 

adaptive algorithm uses the EF error between the EF command and response to tune the adaptive 

parameters P and ka in the forward prediction algorithm, as shown in Fig. 3. In this figure, there are three 

controllers in the EFC combined with AFP algorithm. The innermost controller is the displacement 

controller for the actuator, which is primarily to guarantee the stable displacement control for the 

actuator)specimen system. The middle)loop controller is the equivalent force controller, which is mainly 

used to guarantee the stable force control for the equivalent force control system. The outmost controller is 

the AFP controller, which is finally to guarantee the equilibrium condition of the equivalent force system 

shown as Equation (4) in spite of strong nonlinearity.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Block diagram of EFC combined with AFP algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Block diagram of AFP algorithm [33]. 
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For prediction of the equivalent force command signal, we assume that the
 
equivalent

 
force

 
can be 

represented by a polynomial in t of order N with coefficients ai (i=0, …, N), given by 

                             EQ 0 1
N

N
F a a t a t= + + +�                              (8) 

when n data points are available, i.e., 

EQ, +1 01 1

EQ, 1

EQ, 2 2 2

1

1

1

N
i i i

N
i i i

N
i n Ni n i n

F at t

F at t

F at t

+ +

− + − + − +

    
    
    =
    
    
      

�

�

� �� � � �

�

                       (9) 

Using a standard least)square method, the polynomial coefficient vector �= [a0, …, aN]T can be obtained 

as 

                              ( ) 1T
EQ

− Τ=� " " " �                               (10) 

in which 

                        

1 0 0

1 ( )

1 ( 1) ( ( 1) )

N

N

t t

n t n t

 
 −� −� =
 
 

− − � − − � 

"

�

�

� � � �

�

                   (11) 

where we assume ti+1=0 for simplicity and �EQ=[FEQ,i+1, FEQ,i,…, FEQ,i)n+2]
T. 

The signal is predicted forward P multiplied by the time step such that the equivalent force command 

gives 

EQ EQ, 1 1 ( )N

i P
F F P t P t+ +′  = = � � ��                     (12) 

or 

                               EQ
0

( )
N

j

j

j

F a P t
=

′  = � ∑                                (13) 

To account for the amplitude error, the predicted equivalent force command F′EQ is modified to be 

                                EQ a
0

( )
N

j

j

j

F k a P t
=

′  = � ∑                             (14) 

where ka is the amplitude compensation parameter (representing the ratio between the input EF command 

and output EF response amplitudes).  

The parameters P ＆ ka in (14) are related to delay and amplitude error, respectively, which may vary 

with time. To reflect the varying nature of these parameters, P and ka are represented as 

0P P ρ= +                                  (15) 

                                   a a0k k σ= +                                  (16) 

where P0 ＆ ka0 are the initial values and ρ & σ are the varying parts of P & ka. In many cases, the delay 

and amplitude error do not change very quickly; thus, we do not need to update them too frequently. 
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Wallace et al. [14] proposed that ρ and σ can be updated only in four triggered states, with 

1 EQ, EQ,sign( )
i i i i

e e
γ

ρ ρ α+ = ±                           (17)              

+1 EQ, EQ,sign( )i i i ie e
γ

σ σ β= ±                          (18) 

where α and β are the adaptive gains, γ is the convergence rate gain, the ± sign depends on the triggered 

states, and eEQ is the EF synchronization error. The parameter γ controls the convergence rate; the larger it 

is, the faster the convergence of P and ka is. The three gains in Equations (17) and (18) can be determined 

via preliminary analysis (Section 5.2) or from test)based experience. 

There are four trigger states, which are initiated by the equivalent force command because it is not 

significantly affected by noise. At the initial stage, all of the states are zero; when one of the trigger states is 

satisfied, that trigger state changes to 1, and the corresponding adaptive law will proceed. If all of them are 

not satisfied, these triggers stay at zero and the adaptive parameters are kept constant. Equation (17) is 

triggered only when the sign of FEQ,i changes. The ± sign is positive when FEQ,i increases, and vice versa. 

Equation (18) is triggered when FEQ,i reaches a local maximum or minimum, or equivalently, EQ,iF� changes 

its sign. The ± sign is positive when EQ,iF�  increases, and vice versa. We use a custom code in a Matlab 

function of the Simulink model to build a zero crossing block. A local maximum/minimum is defined by 

the zero crossing point of the equivalent force velocity and the change direction, e.g., a local maximum is 

defined as the zero crossing point of the equivalent force velocity with the velocity changing from positive 

to negative. 

The required steps to implement the EFC)AFP method with an appropriate choice for the AFP parameters 

P, ka, α, β and γ are as follows: 

1, Design the actuator controller and determine the displacement transfer function of the actuator)specimen 

(shown in Figure 5) via an identification experiment.; 

2, Design the equivalent force controller and conduct a predetermined equivalent force load test; 

3, Conduct a test with no time delay compensation with small amplitude input. 

4, Measure the time delay and amplitude error at the peak of the waveform; 

5, Set the initial values of P and ka based on step 3; 

6, Set the limits for P and ka via discrete analysis and the transfer function (Section 4, Equations (19))(42)); 

7, Determine the parameters α, β and γ via preliminary analysis (according to Equations (17))(18) and 

Section 5.2) or from test)based experience; 

8, Tune the parameters α, β and γ to get the best compensation effect (according to Equations (17))(18) and 

Section 5.2). 

 

4．STABILITY OF THE EFC COMBINED WITH AN AFP ALGORITHM 

The time delay compensation methods can be viewed as a type of nonlinear control method; thus, its 

stability is a key issue. Herein, the stability of the EFC combined with an AFP algorithm is analyzed by 

considering the specimen nonlinearity. Other than some adaptive compensation algorithms [16)18, 21], 

which use an adaptive algorithm to identify the model parameters, the AFP algorithm is an error)driven 

adaptive feedback controller [34]. Additionally, because the adaption only occurs at the set trigger 

conditions, i.e., φ1,…, φ4, the AFP algorithm is subject to a persistence of excitation [33] condition. For 
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simplicity, the stability of the system for linear specimens is analyzed via a discrete transfer function 

approach [35)38], supposing that the parameters P� and� ka are fixed. Then, the limiting values for the 

adaptive parameters P�and�ka are set based on the results of a linear discrete transfer function approach 

analysis. Then, the stability of this new method for a specimen with nonlinear stiffness is discussed. Two 

types of nonlinear structural behavior are considered: stiffening and softening behavior. The 

force)displacement (F)Δ) relationship for idealized stiffening and softening structures is shown in Fig. 4. 

For civil engineering structures, stiffening can occur in bridge structures with cables [35], whereas 

softening is common in steel and concrete structures that undergo inelastic deformations. 

 

Figure 4. Definition of stiffening and softening behavior. 

 

For the purpose of developing the transfer function for the EFC)AFP method, the tangent stiffness of an 

SDOF structure, represented by Equation (1), is assumed to be constant during the (i+1)th time step for a 

small value of Ht, whereby the restoring force for the (i+1)th time step can be expressed in terms of the 

displacement response dm from the (i)th to (i+1)th time step, as follows:  

m m
E, +1 E, t 1( )i i i iR R K d d+= + ⋅ −                              (19) 

where Kt is the tangent stiffness of the experimental substructure for the (i+1)th time step. RE,i+1 from 

Equation (19) is thus utilized in Equation (7) to represent RE,i+1 and therefore to define the transfer function. 

The block diagram representation of RTHS with an EFC)AFP algorithm is shown in Figure 5, in which j 

denotes the sub)step and k denotes the total number of sub)steps. The block servo)hydraulic actuator and 

servo controller represents the actuator)specimen system and actuator controller, whose input and output 

signals are the displacement (The detail is discussed in the end of Section 3). 

        
 

Figure 5. Block diagram of RTHS with an EFC)AFP algorithm, EFC controller and transfer function of 

actuator)specimen system. 

 

For an SDOF structure, applying the discrete z)transform [39] to (6) and (7) yields 
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N N N
EQ N N 2

4 4 2( ) ( ) ( )
( ) ( ) ( ) ( )

M M Ca z v z d z
F z F z M C

z t z t t z
= + + + + +

� � �
          (20) 

EQ E

PD N

( ) ( )
( )

F z R z
d z

K K

−
=

+
                               (21) 

where z is the complex variable in the discrete z)domain; F(z), a(z), v(z), d(z), RE(z) and FEQ(z) are the 

discrete z)transforms of the input excitation force, acceleration, velocity, displacement, restoring force and 

equivalent force command, respectively. 

Applying the discrete z)transform to (2) and (3) yields                                                        

( ) 2( 1)
( )

( ) ( 1)vd

v z z
G z

d z z t

−
= =

+ �
                           (22) 

2

2 2

( ) 4( 1)
( )

( ) ( 1)
ad

a z z
G z

d z z t

−
= =

+ �
                         (23) 

Substituting Equations (21), (22) and (23) into Equation (20) gives 

EQ E

1 ( )
( ) ( ) ( )

1 ( ) 1 ( )

G z
F z F z R z

G z G z

′
= −

′ ′− −
                   (24) 

The numerator and denominator coefficients of discrete transfer function G´(z) are tabulated in Table 1. 

  
Table 1 Numerator and Denominator Coefficients of Discrete Transfer Function G´(z) 

1d
 2

N N N4 2+ � + �M C t K t  1n
 

0 

2d  2
N N N8 4 2+ � + �M C t K t  2n

 
N N16 4+ �M C t  

3d  2
N N N4 2+ � + �M C t K t  3n

 
N4 �C t  

 

According to Equation (14), the formulation of F′EQ,i+1 is a nonlinear function requiring the equivalent 

force command FEQ,i+1, the order of polynomial N, the number of data n, the prediction step P, and the 

compensation parameter ka. It becomes a nonlinear time)invariant function if the polynomial parameters N 

and n are determined. According to Equation (14), the discrete transfer function GC(z) between the 

equivalent force command FEQ and the prediction EF command F′EQ and the formulations of F′EQ,i+1 are 

tabulated in Table 2. 

 

Table 2 Formulation of F′EQ,i+1 and Discrete Transfer Function Gc(z)  

Polynomial 

parameters 

Formulation of FˊEQ,i+1 Discrete transfer function Gc(z)  

N=1,n=2 a EQ, 1 a EQ,(1 ) i ik P F k PF++ −  a a

1
(1 )k P k P

z
+ −  

N=2,n=3 

2
2

a EQ, 1 a EQ,

3
(1 ) ( 2 )

2 2
i i

P
k P F k P P F++ + − +  

2
2

a a

3 1
(1 ) ( 2 )

2 2

P
k P k P P

z
+ + − +  
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2
a EQ, 1

1
( )
2 2 i

P
k P F −+ −  2

a 2

1 1
( )
2 2

P
k P

z
+ −  

… … … 

 

For example, when the polynomial parameters of the AFP algorithm are set as n=2 and N=1, the 

discrete transfer function GC(z) is 

EQ a a
C

EQ

( ) (1 )
( )

( )

F z k P k P z
G z

F z z

′ − + +
= =                         (25) 

The selection of a suitable interpolation function to generate EF commands is important with respect to 

the resulting velocity and acceleration scheme. One simple choice is that the EF commands are constant 

during the time step such that 

c
EQ EQ, 1( ) ( 1)iF t F i t t i t+′= � ≤ ≤ + �                            (26) 

Thus, the discrete transfer function between the modified EF command F
c
EQ(z) and the prediction EF 

command F′EQ(z) is 

c
EQ

IP
EQ

( )
( )

( )

F z
G z z

F z
= =

′
                                   (27) 

For the actuator control)loop system in continuous time, the 2nd)order differential equation is used to 

model the actuator    

m m 2 m 2 c
A A A A2d d d dξ ω ω ω+ + =�� �                          (28) 

where dm and dc are the displacement response and command, respectively, and ωA and ξA are the model 

parameters. 

The PI controller is used as the EFC controller [9]. The sampling time step for the EFC controller is 0.001 

s. From Fig. 1, the difference equations of the SDOF equivalent force control system can be obtained as 

c, m,
EQ, +1 EQ, +1 EQ, +1( )j j j

i i ie F F= −                            (29) 

1
1 P EQ, +1 I EQ, +1 EQ, +1 s

1

1
( )

2

i n j
j j j j

i i i iu K e K e e t
× +

−
+ = + +∑                  (30)              

c,
1 F 1
j j

i i
d C u+ +=                                   (31)              

m, m, m , 1 m ,
EQ, +1 1 PD N E, +1 E, +1( )j j j j

i i i iF d K K R R−
+= + + + �                  (32) 

Assuming the tangent stiffness of the experimental substructure is constant during a step leads to 

m, m, m, 1
E, +1 t +1 +1( )j j j

i i iR K d d −� = −                           (33)   

where Kt is the tangent stiffness of the experimental substructure. For the sake of simplicity, the EFC 

controller can be equivalent to a continuous system because of the small sampling time step 

c m
P EQ I EQ EQ( )u K e K F F= + +∫                            (34)              
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c
Fd C u=                                    (35)              

m m m
EQ, PD N E( )F d K K R= + +                            (36) 

m m
E tR K d=                                   (37)   

Substituting Equations (28), (35), (36) and (37) into Equation (34) gives 

c c m m m m
2 E Q 3 EQ 1 2 3b F b F d a d a d a d+ = + + +��� �� ��                       (38) 

The coefficients of differential Equation (38) are expressed in terms of the structure and model parameters 

MN, CN, KPD, Kt, CF, ωA, and ζA in Table 3. 

 

Table 3 Coefficients of Differential Equation (38) 

1a
 

A A2ζ ω  2b
 2

F A PC Kω  

2a
 2 2

P F A PD N t AC ( )K K K Kω ω+ + +  3b
 2

I F ACK ω  

3a
 2

I F A PD N tC ( )K K K Kω + +  
  

 

 According to (26), the EF function is constant during the time step. The EFC system (38) is discretized by 

a zero)order)hold equivalent method [39] to get  

m
2m

1 2 3
EQ c 3 2

c EQ 0 1 2 3
EQ

1
1 ( )

( )
( )

1 ( )
1 ( )

d z
n z n z nd zz

G z
F z d z d z d z d

F z
z

 −  + + = = =
+ + + − 

 

                 (39) 

where d
m(z) and F

c
EQ(z) are the discrete z)transforms of the displacement response and modified EF 

command, respectively; 3n , 2n , 1n  and 3d , . . ., 0d  are the numerator and denominator coefficients of 

GEQ(z), respectively, and 2 and 3 are the order of the polynomial for the numerator and denominator, 

respectively. 

The discretized transfer function between the reaction force RE(z) and the displacement response dm(z) is 

E
E

R tm
m

1
1 ( )

( )
( )

1 ( )
1 ( )

R z
R zz

G z K
d z

d z
z

 − 
 = = =
 − 
 

                          (40) 

The closed loop block diagram of the EFC)AFP system is shown in Fig. 6. 
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 Figure 6. Closed loop block diagram for the EFC)AFP algorithm. 

 

For nonlinear structures, the closed loop transfer function [36] between F(z) and dm(z) shown in Fig. 6 can 

be written in incremental form as  

m
m

C IP EQ

C EQ R

1
( ) ( ) ( ) ( )( )

( )
1( ) 1 ( ) ( ) ( ) ( ) ( )( )

z
d z G z G z G zd z zG z

zF z G z G z G z G z G z
F z

z

−
�

= = =
− ′ ′� − +

                 (41) 

where the increments Hd
m(z) and HF(z) are defined as Hd

m(z)=d
m

i+1(z))dm
i(z) and HF(z)=Fi+1(z))Fi(z), 

respectively. The numerator and denominator coefficients for the discrete transfer function are expressed in 

terms of structure parameters MN, CN, KPD, Kt, CF and Ht. 

When the specimen is linear, i.e., Kt = KE, the closed loop transfer function can be obtained as  

m
C IP EQ

C EQ R

( ) ( ) ( )( )
( )

( ) 1 ( ) ( ) ( ) ( ) ( )

G z G z G zd z
G z

F z G z G z G z G z G z
= =

′ ′− +
                (42) 

where the numerator and denominator coefficients for the discrete transfer function (42) are expressed in 

terms of structure parameters MN, CN, KPD, KE, CF and Ht.  

The closed loop transfer function between the EF command and response can be written in incremental 

form as 

m
m EQ

EQ C IP EQ

EQ C IP EQ R
EQ

1
( )( ) (1 ( )) ( ) ( ) ( )

( ) =
1( ) 1 ( ) ( ) ( ) ( ) ( ) ( )( )

cl

z
F zF z G z G z G z G zzG z

zF z G z G z G z G z G z G z
F z

z

−
′� −

= =
− ′ ′� − +

      (43) 

where the increments �FEQ(z) and �F
m

EQ(z) are defined as �FEQ(z)=FEQ,i+1(z))FEQ,i(z) and 

HF
m

EQ(z)=F
m

EQ,i+1(z))Fm
EQ,i(z), respectively. 

The transfer function between the EF command and response can be written in incremental form as 

m
m EQ

EQ
fd C IP EQ

EQ
EQ

1
( )( )

( ) ( ) ( ) ( )
1( ) ( )

z
F zF z zG z G z G z G z

zF z
F z

z

−
�

= = =
−�

                  (44) 

When the poles of the characteristic function of the closed loop transfer function G(z) are all located 

inside the unit circle, the test system is stable [35]. Because the adaptive parameters P and ka change during 

the test, improper algorithm parameter design may produce unstable poles. If the actuator model is known 

and the specimen is linear (KE=Kt), a stable range for P and ka can be calculated. Furthermore, the limiting 

values for the prediction parameter P and amplitude gain ka can be set according to the analysis. Then, the 

F(z) 

1

1 ( )′− G z
#�

) 

GC(z) 

F´EQ(z) 

EQ ( )G z
d

m
 (z) 

( )

1 ( )

′
′−

G z

G z
 

GR(z) 

∑ 

RE(z) 

FEQ(z) 
GIP(z) 

F
c
EQ(z) 
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stability of this method for a nonlinear system is discussed. 

For example, the parameters of an SDOF structure adopted for numerical simulations are: MN= 

6658.24×103 kg, KN=131.43×106 Nm)1, KE=131.43×106 Nm)1, ζN=0.05 and CE=0, which result in a 

structural period of 1 s. The parameters of the EFC controller and the AFP algorithm are KP=0.1, KI=80, 

N=4, and n=5. The actuator transfer function model is TP(s)=(11.41s
2)8113.28s+2.954×106) 

(s3+451.73s
2+62126.9s+ 2.956×106))1.  

The maximum modulus of the poles of the characteristic function, i.e., (42), is defined as p. The stability 

ranges for the parameters P and ka are shown in Fig. 7(a) and 7(b). Fig. 7(a) shows that there is a stability 

limit for the parameter P because the max modulus of poles is larger than 1 when the parameter P is larger 

or less than the constant values. The stability limit of P is affected by the parameter ka (e.g., the stability 

range for P is reduced when the parameter ka=1.1908 rather than ka=1). From Fig. 7(b), it is also clear that 

there is a stability limit for ka, which is affected by the parameter P. Note that the upper stability limit for ka 

is very large when P=1.26 (the optimal value for P is 0.76 and the optimal parameter for ka is 0.9908) 

because the overcompensation effectively adds additional damping. To ensure the stability of the system, 

the limiting values for the parameters P and ka are, respectively, set as [0.26≤P≤1.26] and 

[0.7908≤ka≤1.1908]. 

When the SDOF structure develops nonlinear behavior, the stability of the EFC)AFP can be investigated 

by analyzing the poles of the discrete transfer function [36] by systematically varying the structural 

properties (KE, Kt) and the parameters P and ka. The stability limit is established for a selected set of values 

for KE, Kt, P, ka, and the time step Ht by assigning the magnitude of the poles to be 1.0. Fig. 7(c) shows the 

results of the stability analysis of the EFC)AFP algorithm for four selected cases using different parameter 

combinations of P and ka, i.e., [P, ka]=[0.26, 0.7908], [0.76, 0.9908], [0, 1] and [1.26, 1.1908]. In Fig. 7(c), 

the stability limit for each case is expressed in terms of values of V=ωn•Ht as a function of αt. The 

parameter αt is the degree of nonlinearity in the structure and is the ratio Kt/KE, while ωn is the elastic 

natural frequency of the SDOF structure. Fig. 7(c) shows that EFC)AFP has a finite stability limit when 

0<αt<1 and αt>1, indicating that the system is conditionally stable. For each of the four cases in Fig. 7(c), 

the EFC)AFP is shown to have a larger stability limit for a softening structure (i.e., when αt<1) than that for 

a stiffening structure (i.e., when αt>1). It can also be observed that EFC)AFP (the selected cases using the 

parameters [P, ka]=[0.26, 0.7908], [0.76, 0.9908] and [1.26, 1.1908]) has a larger stability limit than the 

EFC method (a selected case using the parameters [P, ka]=[0, 1]).  

The algorithm is unconditionally stable when the experimental structure is perfectly plastic (i.e., αt=0), 

where the stability limit is at infinity (in Fig. 7(c), the value of ωn•Ht is shown plotted to a value of 628950). 

When the structure develops perfectly plastic behavior, the restoring force of the experiment is a constant 

value during the time step, and when used in Equation (19), an accurate value of the predicted displacement 

di+1 is achieved. Thus the stability of the system is the same as that of the Newmark 

constant)average)acceleration method. 

The relationship between the stiffness nonlinearity and system stability with ωn=6.28 and Ht=0.01 s is 

shown in Fig. 7(d). As shown, the stability upper limit value of αt is 8.9 for the EFC. However, the stability 

limit value of the EFC)AFP algorithm expands to 25.64. Thus, the EFC combined with an AFP algorithm 

has better stability properties for stiffness compared to the EFC algorithm in this case.  
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Figure 7. Stability of the EFC combined with an AFP. (a) Stability range for the parameter P; (b) Stability 

range for the parameter ka; (c) Effect of αt on the stability limit of the EFC)AFP; (d) Stability range for the 

parameter αt. 

 

Because the effect of the parameters P and ka on the stability is coupled, to prove the stability of the 

system with the adaptive parameters P and ka in the limiting range, the intensity plot of the stability of the 

EFC combined with an AFP is shown in Fig. 8 for the linear structure. The z coordinate value is the 

maximum modulus of the poles of the characteristic function (42). On the right side, a color bar shows the 

value of z; the regions bounded by the red dashed box represent the bounded domain. Fig. 8 shows that the 

system is always stable when the parameters ka and P are in the bounded domain (because the value of the 

maximum modulus of the poles is smaller than 1). Thus, the stability of the system with ka and P in the 

bounded domain is not affected by the adjustment of the parameters P and ka; however, the adaptive 

parameters are varied either continuously or at four trigger conditions [14].  
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Figure 8. Intensity plot of the stability of the EFC combined with AFP 

 

The accuracy of the EFC)AFP system can be presented by using a Bode diagram [38] according to 

Equation (44), which includes the EFC closed)loop system and AFP algorithm. Thus, the transfer function 

between the EF command and response of the EFC)AFP algorithm is analyzed in the frequency domain, as 

shown in Fig. 9. 
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Figure 9. Bode diagram of the transfer function between the EF command and response of the EFC)AFP. (a) 

Bounded domain 
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Amplitude characteristic of Bode; (b) Phase characteristic of Bode; (c) Amplitude characteristic of 

closed)loop Bode; (d) Phase characteristic of closed)loop Bode. 

 

Fig. 9 shows that the EFC)AFP algorithm can compensate for the dynamics of the system accurately in the 

0)10 Hz frequency range. Moreover, the performance of the EFC)AFP algorithm with the limiting values 

for the parameters P and ka is slightly superior to that of the AFP without compensation from the phase 

characteristic. There is a resonance peak approximately 10 Hz for the EFC system; the AFP algorithm 

cannot eliminate this characteristic because it depends on the inherent dynamics of the actuator. The closed 

loop transfer functions of the EFC)AFP system from Equation (43) are shown in Figure 9(c) and 9(d). 

From the figure, it can be observed that the AFP algorithm can add damping around the natural frequency 

and can improve the phase characteristics of the closed)loop system. 

 

5．NUMERICAL SIMULATION 

5.1 Numerical simulation of RTHS with the stiffness specimen 

Numerical simulations are conducted in the time domain with MatlabTM. The schematic diagram of the 

SDOF structure, with a spring as an experimental substructure, is shown in Fig. 10. The tangent stiffness of 

the spring, Kt, is related through Kt=αtKE to the initial stiffness, KE, which is used to determine the 

displacement)force conversion factor CF. The nonlinear specimen has a bilinear stiffness, with two linear 

stiffnesses represented by the coefficients: αt=1 and αt=9, defining the stiffness curve (see Fig. 11(d)).  

 

 

 

 

 

 

 

 

 

 

Figure 10. The substructured SDOF system. 

 

The other parameters are: MN= 6658.24×103 kg, KN=131.43×106 Nm)1, and KE=131.43×106 Nm)1, which 

result in a structural period of 1 s; ζN=0.05 and CE=0. The third)order transfer function model of the 

actuator)specimen system is used [10]: TP(s)=(11.41s
2)8113.28s+2.954×106)(s3+451.73s

2+62126.9s+ 

2.956×106))1. The integration time interval Ht is 0.01 s. The EFC controller parameters are KP=0.1 and 

KI=80. The adaptive forward prediction algorithm parameters are P0=0.76 and ka0=0.9908 (they are close to 

the optimal parameters P and ka), N=4, n=5, α=10)15, β=5×10)17, and γ=2. The limiting values for the 

parameters P and ka are, respectively, set as [0.26≤P≤1.26] and [0.7908≤ka≤1.1908]. 

The displacement response and force)displacement relationship for the experimental substructure subject 

to the El Centro (NS, 1940) earthquake, with a peak acceleration of 0.0125g, is shown in Fig. 11. Fig. 

11(a)c) show that the seismic responses obtained by the EFC combined with an AFP algorithm match the 

exact solution well. However, the responses of the EFC without delay compensation are unstable when the 

initial stiffness is underestimated, as shown in Fig. 11(c). Note that the parameter αt is 9 in Fig. 11(d), 

which is larger than 8.9, which was the limiting value for stability derived in Section 4.  

tK  

NK  

Experimental substructure 

NM  NC
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Figure 11. Numerical simulation of seismic responses. (a) Linear specimen: global view; (b) Linear 

specimen: enlarged view; (c)Nonlinear specimen: global view; (d) Nonlinear specimen: force)displacement 

relationship for experimental substructure. 

 

5.2 Numerical simulation analysis of the adaptive variables 

The selection of the data point number n and the order of polynomial N were discussed particularly by 

Wallace et al. [33] and Tu et al. [22]. To give guidance for the selection of the parameters α, β, and γ, the 

effect on performance is analyzed below. Note that the limiting values for P and ka are not set in the 

following simulations to make the phenomenon more obvious. The parameters of the EFC controller are 

KP=0.5 and KI=36. The adaptive forward prediction parameters are P0=1 (the optimal value of P0 is 2.3), 

ka0=1.0043, N=4, n=5, α=10)15, and β=5×10)17. The parameters of the structural model are the same as those 

of the linear SDOF structure in Section 5.1. The earthquake record (El Centro (NS, 1940)), with a peak 

acceleration of 0.0125g, is used as the input. The resulting displacement responses of the EFC combined 

with an AFP algorithm with different γ are shown in Fig. 12. 
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Figure 12. Displacement response for earthquake input. (a) Global map of displacement response 

comparison; (b) Enlarged view of displacement response comparison. 

             

When γ is set as 3 and 5, the system is unstable because the parameters ka and P are increased to (1, 17.08) 

and (1, 7.56×1012), respectively, which are outside the stability range of the parameters P and ka. Because 

the equivalent force error is larger than unity, the parameter γ cannot be set too large. Fig. 12(b) reveals that 

the greater the value of γ, the faster the tuning process. Fig. 12(b) shows that the displacement response 

with γ=2 is the closest to the exact value of displacement. The parameter γ is set as 2 in the subsequent 

simulation and experiment. The displacement of the EFC)AFP algorithm with different β is shown in Fig. 

13. 
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Figure 13. Displacement response for earthquake input. (a) Global map of displacement response 

comparison; (b) Enlarged view of displacement response comparison. 

 

Fig. 13 shows that the compensation effect is better when the value of β is larger. 

  The displacement of the EFC)AFP algorithm with different α is shown in Fig. 14. 
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Figure 14. Displacement response for earthquake input. (a) Global map of displacement response 

comparison; (b) Enlarged view of displacement response comparison. 

                              

Fig. 14 shows that the compensation effect is improved when the value of α is set larger. However, the 

parameter α cannot be set too large, for example, the system will be unstable when the parameter α≥10)14. 

 

6．EXPERIMENTAL INVESTIGATION 

For the hybrid simulation, we used a Simulink block to formulate a model and a dSPACE DS1104 R&D 

Controller Board to implement in real time. The sampling frequency of the dSPACE digital controller was 
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1000 Hz. 

The schematic diagram of the SDOF structure, with a spring as an experimental substructure, is shown in 

Fig. 10. Fig. 15 shows the substructured model set)up, along with the transfer system that imposes the 

interface displacement on the physical substructure. A PI controller was used to control the actuator, with 

controller gains kP=20 and kI=0.15. For the EFC in this experimental study, an EFC controller with gains 

KP=1.8 and KI=16 was adopted. Through system identification in some pre)tests, the spring was found to 

have a stiffness of KE=7912.6 Nm)1 and a damping coefficient of c=0.6 Nsm)1. The parameters of the SDOF 

structure were: MN=400.857 kg, KN=7912.6 Nm)1, and ζN=0.02, resulting in a natural period of 1 s. The 

integration interval Ht was 0.01 s. The hybrid simulation was carried out at the Bristol Laboratory for 

Advanced Dynamics Engineering, University of Bristol.  

 

Figure 15. Experimental set)up of substructured model. 

 

The step responses of displacement and equivalent force are shown in Fig. 16 and 17, respectively. It can 

be seen that the responses tracked the command well. The setting time for both displacement and 

equivalent force was approximately 0.25 s. 


�� 
�� 
�� ���

������

�����


������

D
is

pl
ac

em
en

t(
m

)

Time(s)

�Response
�Command

��� ��
 ��� 
�� 
��
���

���,��
�

���,��
�


��,��
�

E
qu

iv
al

en
t f

or
ce

(N
)

Time(s)

�Command
�Response

 

Figure 16. Step response of displacement    Figure 17. Step response of equivalent force response 

 

6.1 Spring specimen real)time hybrid simulation 

The earthquake input equivalent force and displacement responses of the RTHS from El Centro earthquake 

excitation of 0.009g peak acceleration are shown in Fig. 18. In this case, the EFC controller gains are 

KP=1.6 and KI=18; the displacement controller gains are kP=20 and kI=0.15; the AFP algorithm parameters 

are N=3, n=5, P0=5.5, ka,0=1.135, α=9×10)8, β=4.5×10)9, and γ=2; the limiting values for the parameter P 

are set as [)0.5 10.5]; the limiting values for the parameter ka are set as [0.935 1.335]. The EF response is 

multiplied by 4.5 from the EFC for El Centro earthquake excitation with peak acceleration of 0.002g. The 
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EFC controller gains are KP=1.6 and KI=18, and the displacement controller gains are kP=20 and kI=0.15. 
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Figure 18. Equivalent force and displacement response. (a) Equivalent force response; (b) Enlarged view of 

equivalent force response; (c) Displacement response; (d) Enlarged view of displacement response; (e) EF 

response compared to EF command. 
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Figure 19. Adaptive parameter characteristics for Figure 16(a), (b). (a) Delay compensation adaption 

characteristics; (b) Amplitude error adaption characteristics. 

 

From Fig. 18(a)b), it can be seen that the equivalent force response tracked the command well at the end of 

the time step. From Fig. 18(b), there are also some small errors in the peak EF, which are due to the large 

deadzone region of the actuator when it changes direction. From Fig. 18(c)d), it can be seen that the 

displacement response matched the exact solution well, although there are again small amplitude errors at 

the peak when the displacement is small because the noise in the displacement responses has relatively 

greater effect when the displacement response is small.  

From Fig. 18(e), the equivalent force response of the EFC became unstable after some seconds because of 

the large time)delay. Note that the equivalent force response obtained by the EFC is multiplied by 4.5, 

which is the scale between the input signals of the two methods. It is clear that the equivalent force 

responses of the EFC are remarkably different from the responses of the EFC combined with an AFP. 

Because the input signals of the EFC are only 0.002g, its displacement response is nearly zero 

(approximately 0.01 mm). Thus, the noise and time delay make the test responses have great error at the 

beginning of the test. In summary, the EFC combined with an AFP gives significantly better accuracy than 

the EFC. 

The adaptive parameter characteristics for earthquake input are shown in Fig. 19. It can be seen that the 

adaptive forward prediction and adaptive amplitude correction continue to adapt throughout the test period.  

 

6.2 Magneto)rheological damper specimen real)time hybrid simulation 

 

 

 

 

 

 

 

 

Figure 20. The substructured SDOF system.  
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Figure 21. Experimental set)up of substructured model. 

 

The structure to be emulated was an SDOF with MN=720 kg, KN=74400 Nm)1, and ζN=0.02. The schematic 

diagram of the structure is shown in Fig. 20. The natural period of the structure was 1.6179 s. The physical 

part was a Magneto)rheological (MR) damper (RD)1005)3) produced by Lord Company; it was used as a 

passive damper with zero drive voltage. The excitation to the structure was El Centro (NS, 1940), with 

peak ground acceleration of 0.0625g. Fig. 21 shows the test set)up.  

A proportional and feed forward controller was used to control the actuator, with controller gains of kP=22 

and kff=1.08. For the equivalent force control in this real)time hybrid simulation, the EFC controller with 

gains KP=1, KI=35 was adopted. The integration interval Ht was 0.01 s for the hybrid simulation. To smooth 

the actuator response, the equivalent force commands were interpolated linearly with time, and the sub)step 

interval was 0.001 s [7].  

Three cases were considered in the tests: without compensation, the AFP compensation, and fixed 

compensation. The delay and amplitude error for the cases with fixed delay compensation were determined 

using the results without compensation: the data at the peak equivalent force command were used to 

determine the amplitude error, and the data at the zero equivalent force command closest to the peak were 

used to obtain the time delay. Correspondingly, P=3 and ka=0.963 were obtained for fixed delay 

compensation. For the AFP, the parameters were P0=3.5, ka0=0.924, α=2.5×10)9, β=1.25×10)10 and γ=2. 

Note that the initial values of P and ka were obtained from the data of fixed delay compensation. The 

adaptive parameters, P and ka, were constrained within the ranges [)1.5, 8.5] and [0.724, 1.124], 

respectively. 

The equivalent force responses with an AFP algorithm, fixed compensation and without time delay 

compensation are shown in Fig. 22(a) and 22(b). The equivalent force errors are shown in Fig. 22(c) and 

Table 4. The force)displacement relationship for the MR damper during the test is shown in Fig. 23. Fig. 23 

shows that the specimen has a clear nonlinear behavior. In Table 4, the maximum relative error, peak value 

error and normalized root)mean)square of error are defined as 
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Figure 22. Comparison of responses with and without delay compensation. (a) Equivalent force response; 

(b) Enlarged view of equivalent force response; (c) Equivalent force error. 
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Figure 23. Force)displacement relationship of MR damper 

 

Table 4 Equivalent force error comparison 

Method Without 

compensation 

Fixed delay 

compensation 

Adaptive delay 

compensation 

Maximum error 

eEQ (N) 
8.22×104 3.89×104 1.93×104 

Maximum relative error 

e1 (%) 
24.4 12.2 6.1 

Peak value relative error 

e2 (%) 
9 5.9 0.92 

The normalized RMS of error eRMS 

(%) 
22.59 11.44 6.47 

                       

EQ

1 c
EQ

maximum of
100%

maximum of

e
e

F
= ×

                           (45)

Page 23 of 27

Structural Control and Health Monitoring

http://mc.manuscriptcentral.com/stc

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview

 

24 
 

m c
EQ EQ

2 c
EQ

maximum of maximum of
100%

maximum of

F F
e

F

−
= ×

                    (46)

 

                        

c m 2
EQ EQ1

RMS
c 2

EQ1

1
( )

100%
1

( )

N

i

N

i

F F
Ne

F
N

−

−

−
= ×

∑

∑
                          (47) 

where N is the number of data points during RTHS. 

From Fig. 22(a)c), it can be seen that the equivalent force response tracked the command the best with an 

AFP. The delay and amplitude errors are clearly seen in Fig. 22(b) for the case without time delay 

compensation. The responses were improved with the fixed compensation, but a small overshoot could still 

be seen. With an AFP, the response matched the command almost perfectly. The advantage of the AFP is 

further revealed quantitatively from the data in Table 4.  

 

7．CONCLUSION 

The AFP algorithm is used to improve the performance of the EFC for real)time hybrid simulation. The 

stability of this new method is studied by analyzing the pole locations in the discrete transfer function. The 

limiting values for the adaptive parameters P and ka are set based on this analysis. The results show that the 

stability limit of the new method for both stiffening and softening structures is larger than that of the EFC. 

Numerical simulation results of RTHS with linear and stiffening specimens are presented. Simulation 

results show that the AFP version has better stability and accuracy than the unmodified EFC. RTHS with a 

linear stiffness spring specimen is conducted using seismic waves as the input. Test results indicate that the 

AFP algorithm can adaptively compensate for the time delay of the equivalent force control system. Finally, 

the experimental results with an MR damper specimen demonstrate that the EFC)AFP algorithm has better 

accuracy than the unmodified EFC and EFC with fixed compensation when applied to a nonlinear 

experimental structure. 
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