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ABSTRACT

A power curve relates the power produced by a wind turbine to the wind speed. Usually, such curves are
unique to the various types of wind turbines, so that by monitoring the power curves, one may monitor
the performance of the turbine itself. Most approaches to monitoring a system or a structure at a basic
level, generally aim at differentiating between a normal and an abnormal state. Typically, the normal
state is represented by a model, and then abnormal, or extreme data points are identified when they are
compared to that model. This comparison is very often done pointwise on scalars in the univariate case,
or on vectors, if multivariate features are available. Depending on the actual application, the pointwise
approach may be limited, or highly prone to false identifications. This paper presents the use of extreme
functions for the performance monitoring of wind turbines. Power curves from an actual wind turbine,
are assessed as whole functions, and not individual datapoints, with the help of Gaussian process
regression and extreme value distributions, with the ultimate aim of the performance monitoring of the
wind turbine at a weekly resolution. The approach is compared to the more conventional pointwise
method, and approaches which make use of multivariate features, and is shown to be superior in terms
of the number of false identifications, with a significantly lower number of false-positives without

sacrificing the sensitivity of the approach.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Monitoring the health of structures is vital for their safety, as
well as beneficial to the reduction of the high costs their mainte-
nance may demand. Wind turbines are becoming increasingly
more popular, so that their maintenance is also of high interest.
Traditional non-destructive evaluation (NDE) methods [1] are
currently the main inspection tool for structures, and they may be
an answer to wind turbine monitoring as well. However, although
they are highly effective, they have certain disadvantages regarding
their use, which include among others, general limitations to
accessible areas of the structure, high demand on expertise and also
high inspection costs. In addition, NDE methods work in a local
vicinity and so usually they necessitate the a priori knowledge of
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the area of interest, and they may disrupt the normal operation of
the structure during the inspection process. Therefore, various
other monitoring methods have been proposed for wind turbines,
from vibration approaches on the blades [2—4] to advanced signal
processing in gearboxes [5—7] or bearings [8]. General reviews can
be found in Refs. [9,10].

Among the various proposed approaches, which also make use
of supervisor control and data acquisition (SCADA) data [11], are the
power curves. Wind turbines are designed by manufacturers to
have a specific relationship between the power produced and the
wind speed, and in general, researchers have exploited the devia-
tion from a reference curve in order to monitor the state of a tur-
bine e.g. Refs. [12,13]. Various ways of modelling a power curve can
be found in the literature [14,15]. Other works on using machine
learning for modelling power generation can be seen in
Refs. [12,16], while in Ref. [17], three operational curves, power,
rotor and pitch were used for reference in order to produce control
charts [18] for the monitoring of wind turbines. More recently in
Ref. [19], wind turbine power curves were modelled with the help
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of Gaussian processes (GPs) for a full offshore wind farm, and their
performance was also monitored with the help of control charts on
the residuals of the models.

Most of the previously mentioned methods, including the po-
wer curve, can be loosely categorised under the general term of
Structural Health Monitoring (SHM), which has emerged as a po-
tential answer to the drawbacks of NDE techniques. Comprehensive
reviews on SHM are [20—22]. At the lowest level of SHM, the main
objective is simply the detection of the presence of damage. In most
cases, a model of normality is built, and data originating from the
structure of interest are tested, usually after some processing, in
terms of ‘novelty’ (when compared to the normal model). ‘Novel’
data are thus ‘detected’ and can be considered indicative of dam-
age; the approach can thus be termed by some as ‘novelty detec-
tion’. Although this process is generally considered less challenging
than the full identification of damage i.e. type, location or severity,
and it may be under strict laboratory conditions, when it comes to
real structures there are still various problems to be addressed.

The majority of novelty detection methods often use some form
of statistical test in order to monitor a ‘control’ quantity. Examples
may be control charts [18], which are standard applications for on-
line monitoring of such quantities, and they have been used with
the power curve method as well [17,19]. In most cases, the identi-
fication of the abnormal or extreme values of the ‘control’ quantity
is performed pointwise on individual points, and that was also
done in Ref. [19]. If multivariate features are used, then usually they
are fused in a single scalar quantity, like the Mahalanobis squared-
distance [23], which is then tested against a threshold in order to be
declared as normal or not. In a probabilistic framework, the tested
data are generally assumed as independent and identically
distributed (i.i.d.). Depending on the application, this approach may
be limited and significantly prone to false identifications (e.g. false
alarms), especially for the pointwise comparison, since when it
comes to time series, the ii.d. assumption may not hold. False
alarms may be arguably considered a prime reason for industry not
adopting SHM/monitoring approaches, as well as can constitute
extra economic burden. Conventional efforts to reduce the false
alarms often result in significant loss in the sensitivity of the pro-
posed monitoring methodology. Overall, when data from real and
complex structures under various loading or environmental con-
ditions are used, then novelty detection may prove challenging.

Recently, a novel approach proposed by Clifton et al. [24], at-
tempts to assess functions instead of single data points with several
advantages including improvement in classification results as well
as a reduction in false alarms. The functions are represented by
time series and can be used to create a model of normality. Sub-
sequently, individual functions can be tested for a single classifi-
cation decision in terms of their novelty and their extremity - thus
the method is named as an Extreme Function Theory (EFT). The
purpose of this paper is to apply a modified version of this method,
for the first time for SHM, on power curves, constructed from real
wind turbine data, in a novelty detection scheme. The power curves
are constructed by weekly SCADA data making the approach
attractive for industry. The overall approach is compared to a
conventional pointwise methodology, as well as approaches which
make use of multivariate features.

The layout of the paper is as follows: Section 2 describes the
Extreme Function Theory (EFT) starting from an overview,
continuing into Gaussian process regression theory - described for
the convenience of the reader - before explaining the EFT approach.
Section 3 describes the application of the EFT on wind turbine data
starting from the description of the data and continuing with a
general methodology for the application of EFT on wind turbine
data. Section 4 compares the Extreme Function Theory with con-
ventional pointwise approaches, and Section 5 extends the

discussion on this comparison. Finally, the paper is rounded off
with some conclusions and the overall potential of the approach.

2. Extreme function theory
2.1. Overview

As explained before, the goal of the approach is to classify func-
tions, where the functions are represented by sampled data vectors,
and not just the classification of data points. A model of normality is
also assumed to be constructed prior to the classification, and the
functions have to be tested in terms of their novelty. In a probabilistic
approach, one would prefer to assign probabilities to the functions,
soamapping between a test vector and probabilities is required [ 24].
The Gaussian process (GP) framework provides a convenient prob-
abilistic and non-parametric approach for regression, and is at the
heart of the presented methodology [25].

The problem is formulated as follows: given some data sets
{X;,yij} where i=1...n and n is the number of observations,
construct a model of normality M based on the desired training set,
then test whether a function consisting of a test set {x*,y"} is
extreme compared to the model M. In this approach M will simply
be a GP model conditioned on the training set. In the following
section the Gaussian process regression will be briefly outlined for
the convenience of the reader.

2.2. Gaussian process regression algorithm

Rasmussen and Williams [25] define a Gaussian process (GP) as
“a collection of random variables, any finite number of which have a
joint Gaussian distribution”. The initial and basic step in order to
apply Gaussian process regression is to obtain a mean m(x) and
covariance function k(x,x’) as GPs are completely specified by
them, x represents the input vector. So for any real process f(x) one
can define,

m(x) = E[f (x)] 1
k(x,x') = E[(f(x) — m(x))(f(x) — m(X))] (2)

where E represents the expectation. Often, for practical reasons
because of notation purposes (simplicity) and little knowledge
about the data at the initial stage, the prior mean function is set to
zero. The Gaussian processes can be defined as,

f(%) ~ GP(m(x), k(x, X)) (3)

If a zero-mean function is assumed, the covariance function can
be described as,

cov(f (Xp).f (Xq)) = k(Xp,Xq) = EXP( B % Xp — Xq‘z) (4)

this is the squared-exponential covariance function which is used
throughout this paper, for other choices of covariance functions the
reader is referred to [25]. Assuming now that one has a set of training
outputs f, and a set of test outputs f*, one has the prior [25],

ERLCQR ) ®

where the capital letters represent matrices. If there are n training
points, and n* testing points, then K(X,X*) denotes the n x n*
matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the rest of the matrices K(X,X), K(X*,X)
and K(X*, X*).
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As the prior has been generated by the mean and covariance
functions, in order to specify the posterior distribution over the
functions, one needs to limit the prior distribution in a such a way
that includes only these functions that agree with actual data
points. An obvious way to do that is by generating functions from
the prior and select only the ones that agree with the actual points.
Of course, this is not a realistic way of doing it as it would consume
a lot of computational power. In a probabilistic manner this can be
done easily via conditioning the joint prior on the observations and
this will give (for more details see Refs. [25—27]),

KX, X)K(X,X) ',

f* I( * * * -1 * ) (6)
(X7, X*) — K(X*, X)K(X,X) T K(X,X")

X*,X,f~N<

Function values f* can be generated by sampling from the joint
posterior distribution and at the same time evaluating the mean
and covariance matrices from (6).

In practice, it may not be possible to access function values
themselves, but rather noisy versions: y = f(X) + . Assuming i.i.d.
Gaussian noise ¢ with variance ¢2, then Equation (6) becomes [25],

f Xy, X" ~ N(m(f*),wv(f*)), where (7)
-1
m(f) = KX* X)[KX.X) + a2l 'y (8)

cov() = K(X*, X*) — K(X*,X) [1<(X7X) + agl] TRxXy(9)

The covariance functions used in this study are usually accom-
panied by some extra parameters in order to obtain a better control
over the types of functions that are considered for the inference. As
an example, the squared-exponential covariance function can take
the form (1-dimensional),

1
ky (Xp,Xq) = a% exp( - ﬁ(xp - xq)z) + 02 Opq (10)

where ky, is the covariance for the noisy target set {y}. The length-
scale [ (determines how far one needs to move in input space for the
function values to become uncorrelated), the variance 2 of the
signal, and the noisy variance ¢2 are free parameters that can be
varied. These free parameters are called hyperparameters. The tool
that has to be applied for selecting the model for choosing the
optimal hyperparameters for GP regression, is the maximum mar-
ginal likelihood of the predictions p(y|X,f) with respect to the
hyperparameters 6,

1 1 n
log p(y|X, 0) = 7ij K,y — 5 log|Ky| 5 log 2 (11)

where Ky = K; + 021 is the covariance matrix of the noisy test set
{y} and K; is the noise-free covariance matrix. The reader is
referred to [25] for the exact solution of the maximisation of the
marginal log likelihood through its partial derivatives.

2.3. Extreme function theory with GP regression

Recalling from the previous that the aim of the extreme function
theory is to classify a whole test function f*, with a single decision
as extreme or not when compared to a model of normality M
(which is based on a Gaussian process), GP regression is exploited
[24,25]: the joint distribution over all the test set points {x",y"}
conditioned on the model M is,

p(f|x,£,x") ~ N(u*,K*) (12)

where f is the latent function of the GP model M (given by the mean
prediction of the GP when provided with x as an input), and £ will
be the values of the function to be tested. Based on the general
definition of a GP [25], p(f*|x, f, x*) should follow a multivariate
Gaussian density,

po— L )R ) (13)
2m¥|K*

where d will be the dimension of the test vector x*. The mean
function u* and K* are given by Equations (8) and (9) once all the
hyperparameters are added in (see also [25]),

pr = k(x",x) [k(x, X) + O'%I] 71y (14)

K* = k(x*,x") — k(x",X) [k(x, X) + Uﬂ 7]k(x,x*) (15)

where k(x, X) is the chosen covariance function, which in this study
will be the squared exponential given by Equation (10).

A probability density z can now be defined as z = f, (f") given by
Equation (13), in order to obtain a single value z expressing the
likelihood of a whole test function {x*,y"}. The probability density
function (pdf) of z will have a corresponding Extreme Value (EV)
distribution for low values of z (i.e. in the left tail of the distribu-
tion), and it has been shown that it will asymptotically converge to
a Weibull distribution function (df), and a closed-form solution for
such a df was approximated in Ref. [24].

In this work, in order to calculate appropriate thresholds for z, a
slightly different approach to that in Ref. [24] was followed, due to
various numerical challenges when the exact method shown in
Ref. [24] was attempted. According to Fisher and Tippet [28], when
the number of vector samples originating from an arbitrary parent
distribution tends to infinity, the induced distribution on the
extrema of the samples can only take one of three forms: Gumbel,
Weibull, or Frechet. In the case of z, it is expected to converge to a
Weibull [24,29] form. In order to estimate the parameters of the
Cumulative Distribution Function (CDF), an optimisation algorithm
was employed here. The idea is to fit a parametric model to the tails
of the parent's distribution, and thus estimate its correct co-
efficients. After such coefficients are obtained it is trivial to estimate
a threshold according to the level of confidence that is desired. The
optimisation algorithm employed here was Differential Evolution
(DE) [30], and the approach employed was similar to that in
Ref. [31]. DE belongs to the family of evolution-based algorithms,
where an initial random population of solutions is propagated
through a repeated cycle of mutation and crossover operations
until an optimal (or near optimal, according to desired criteria)
solution is obtained. Inherent in an evolution process is the calcu-
lation of a fitness or cost function, which in the particular problem
here is the error in a fit of a parametric model to a given cumulative
distribution function (CDF). A normalised mean squared error
(NMSE) was used for the curve-fit, given by,

<100 _\?
NMSE®) = oo > (i - %) (16)
Y i=1

where the caret denotes an estimated quantity, y; is the actual
observation, N is the total number of observations and oy the
standard deviation of y.
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3. Application of the extreme function theory on wind
turbines: data description and general methodology

3.1. Description of the data and creation of class datasets

The data used in this study are SCADA extracts originating from
an actual wind turbine owned by Vattenfall. For confidentiality
reasons, no information regarding the actual wind farm, the total
number and the type of the wind turbines is disclosed here. The
case study presented contains recorded data entirely from one
wind turbine in a period of 125 weeks. The mean values of the
power produced, and of the measured wind speed, in 10 min in-
tervals, were available.

The main goal is to determine whether a wind turbine is oper-
ating in a normal state or not, and in order to do this, the power
curve method was used. Examples of a normal (‘good’) and of a
‘bad’ power curve, as provided by Vattenfall, are shown in Fig. 1. The
characterisation of the power curves shown in Fig. 1 as ‘good’ or
‘bad’ relies on the expertise of Vattenfall engineers.

In the spirit of using functions to test, and not individual points,
the analysis is carried out at a weekly resolution i.e. data from one
week correspond to a test function (here, a power curve). It is
important to note, that monitoring wind turbines at a weekly res-
olution has high practical value for a company, and it was also
desired by Vattenfall. Moreover, the exercise presented here makes
use of wind turbine data (power vs wind speed) without the use of
any information on the actual status of the turbines, and this was
also desired by Vattenfall (as such information may not be easily
available always), and does not aim to assess the sensitivity of the
power curve approach to various levels of faults. Since there was no
information on actual status, the data were plotted at a weekly
resolution and were separated subjectively, but based on informed
engineering judgment and using Fig. 1 - which was provided by
Vattenfall - as a reference, together with the guidelines as to how
one might judge a curve as ‘good’ or ‘bad’. Examples of this class
separation can be seen in Fig. 2, where a ‘normal’ week is plotted,

100

variable
Good WTG

f ,“-
; Bad WTG
3’ )
e

Active Power [% total Power]

¥
25+ f
A
04 (& SO ?’:'.. E_24
T T T T
0 5 10 15

Nacelle anemometer
Wind Speed [m/s]

Fig. 1. An example of a ‘good’ and ‘bad’ power curve. WTG stands for wind turbine
generator. Figure provided by Vattenfall.

and in Fig. 3 where ‘abnormal’ weeks are shown. Figs. 2 and 3
contain weeks which were later identified correctly as ‘normal’
(Fig. 2) and ‘abnormal’ (in Fig. 3) by the proposed EFT approach.
Finally, an extra group was also created, one that contained power
curves which could not be categorised unambiguously (by visual
inspection, employing the criteria provided by Vattenfall experts)
either as ‘good’ or as ‘bad’. The latter class could be used as a
‘control’ group, and its correct classification should be crucial for
the practical application of monitoring wind turbines at a weekly
basis - after all there is a need for a confident and objective decision,
rather than just simple visual inspection regarding the ‘state’ of the
wind turbines. Examples of such power curves are shown in Fig. 4,
where it can be seen that the decision whether they are ‘good’ or
‘bad’ simply based on visual inspection, is debatable: Fig. 4(a) dis-
plays power curtailment, and a few zero power values, whereas
Fig. 4(b) displays scatter in the power values. All power curves
shown in Figs. 3—4, are normalised to a zero mean value, and a
standard deviation of unity, both in active power as in wind speed.
In total there were 55 weeks in the ‘normal/good’ class, 36 in the
‘abnormal/bad’ and 34 in the ‘ambiguous/unidentified’ class.

The examples of the ‘bad’ power curves (as those were sepa-
rated based on information from Vattenfall at the initial stage)
shown in Fig. 3, which were correctly identified as ‘bad’, display a
lot of zero/negative power values with high wind speed, and this
indicates that the turbine was either not working at all, due to
severe faults, or was fully shut down, potentially due to mainte-
nance. Since there was no information as to what actually
happened, such a week had to be classified as ‘bad’. Although the
identification of such events may seem trivial, the proposed
method should be able to distinguish between power curves that
do not contain zero values and deviate from the normal. The
example of a ‘bad’ power curve shown in Fig. 1, which was used as
reference, also contained zero values with high wind speed. The
data used in this study, are limited to what actually happened to
that turbine during the period of data recording, and the majority of
them do contain some zero/negative power values. It is also
reminded that there is no information regarding maintenance or
actual faults for any of the other turbines corresponding to the
same wind farm, and consequently, even though other turbine sets
may contain different ‘bad’ curves, they are not fully explored, and
are not currently used in this study. The value of the proposed

1.5 T T T T
&
- v
8 05f j‘ - 1
2 3
6 j
c of X |
° 3
g o
® ‘1-
E.05) f' 1
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1.5 : : : :
-2 -1 0 1 2 3

Normalised wind speed

Fig. 2. An example of a power curve considered to belong to the ‘normal’ class, cor-
responding to a week of data, which was also identified as ‘normal’ by the EFT
approach.
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Fig. 3. Examples of power curves considered to belong in the ‘abnormal’ class, each corresponding to a week of data, which were correctly identified as ‘abnormal’ by the EFT

approach.

approach should be considered in line with the unclassified group,
and will be discussed in the final section of this paper.

3.2. General methodology for the classification of power curves
with extreme function theory on wind turbine data

The initial step in the methodology after creating the datasets is
to train a Gaussian process (GP) based on data from the normal
weeks. All the training was executed with a Matlab package pro-
vided by Ref. [25]. A squared-exponential covariance function
(shown in Equation (10)), and a zero-mean function were the
choices for the GP. The covariance function contains some param-
eters, commonly referred to as hyperparameters (see Equation (11))
which are obtained during the stage of training by minimising the
negative log marginal likelihood of the training data. For more
details on GPs the reader is referred to [25].

The following step is to use GP regression in order to create sets
of z (probability density) values (see Section 2.3) where the dif-
ferential evolution (DE) algorithm will fit extreme value (EV) dis-
tributions - this process is explained in detail in the following sub-
section (Section 3.3). Having acquired EV parameters, then, it is
trivial to obtain thresholds and use GP regression (as described in

25 ; ; . . :

Normalised active power
) o =
- o o (] - (&3} N

N
3
-
'

) . . . . .
-3 -2 -1 0 1 2 3

Normalised wind speed

Section 2.3) on a testing week in order to declare a week as extreme
or not.

In order to create a consistent overall approach for the classifi-
cation of power curves at a weekly resolution, the above steps are
summarised here:

e Let {n, ns,a} be the three classes to which the turbine data were
separated, where {n} is the ‘normal’ class, {a} the ‘abnormal’
and {ns} the non-categorised class, and p; = {X;,y;,i = 1...N} is
a sampled power curve (corresponding to a week of data in this
work). Then a training set Sp; = q; = {X;,y;,i = 1...N;} can be
created where the x; are sampled randomly from the x;. As
N: > N, a bootstrap approach is effectively applied.

o Create three sets: training T = {q;, q; € {n}} sampled randomly
from {n}, of size N x N5, where N, is the number of training
power curves (weeks) and N;=N; a validation set
V ={qg;,q;c{n}} such that VnT, =@, and a testing set
Te = {q;, q; < ({n}u{ns}u{a})}, making sure that it is different
from the training and the validation sets.

e Train a Gaussian Process (GP) entirely on T, and use the V set to
create sets of z values where the DE algorithm will fit extreme
value (EV) distributions. Choose the best EV parameters based

25 T

2b )

1.5}

Normalised active power

-3 -2

Normalised wind speed

Fig. 4. Examples of power curves, corresponding to a week of data, which were originally considered unidentified (class ns) and later classified as ‘abnormal’ (a), and ‘normal’ (b) by
the EFT approach. Both were classified as ‘abnormal’ by the conventional pointwise approach.
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on the lowest normalised mean squared error (NMSE), and then
test on T, (with the thresholds created from the selected EV
distribution) for the classification of the power curves (at a
weekly resolution). Alternatively, a separate validation set V’
may be created, sampled from the {n} and {a} classes to be used
for the selection of the EV parameters. In that case, the choice of
EV parameters can be simply based on the best classification
rate on V'.

3.3. Fitting EV distributions with DE

As differential evolution (DE) belongs to the family of evolu-
tionary algorithms, several runs may be needed to reach an optimal,
or near optimal, solution. In the turbine data used in this study, there
were in total 55 weeks identified (using Fig. 1 as a reference) as
‘normal’, 36 as ‘abnormal’, and the 34 rest as the unidentified (class
{ns}). In order to have sufficient data to obtain accurate results, a
bootstrap methodology was applied here, but only in the creation of
the validation set, not the training. This means that there was a
repeating process of randomly subsampling from the validation set.
The number of sample points from each week was kept to 50, mainly
because larger numbers could cause numerical issues, but also
because it is computationally and practically attractive to perform
classification based on data of small size. The choice of size of the sets
can be arbitrary, but one should consider having sufficient amount of
data for training, and eventually for testing. Here, from the 55
normal weeks, 6 were used for training (corresponding to 300
sample points from the curves), and 35 to create the validation set V,
which was then used for the estimation of the parameters of the
extreme value (EV) distribution based on the best fit. Because the
values of z were very small, the optimisation was performed based
on its natural logarithm, In(z). By using this quantity, there is no
guarantee that its convergence (after infinite samples) will be the
Weibull DF (as was shown in Ref. [24]), so all three EV CDFs (Gumbel,
Weibull, Frechet) were investigated. An alternative would be to use
the generalised EV distribution [32]. After the algorithm was initially
left to run, the best results were obtained with a Gumbel distribu-
tion, which is given by,

x4

H(x) = exp=®P 7 (17)

x—A

L(x)=1—exp P’ (18)

where H(x) is the distribution used for the maxima, and L(x) for the
minima. Because extreme functions need to be identified here, only
the L(x) was employed (i.e. extreme events that have a lower
probability density).

Figs. 5 and 6 show examples of a Gumbel distribution curve-fit
after the DE was left to run and fit to different sizes of data sets from
the parent distribution. It can be seen that there can be a difference
in the curve-fits with the size of the portion of the data which is
used for fitting - something expected. In addition, variability on the
curve-fit and the NMSE values was also observed when the process
was repeated with different seeds of random samples (it is
reminded that all sets are created randomly). It was then decided to
make use of the second validation set V' in order to increase the
consistency of the selection of the EV parameters. The size of the
portion of the data from the V set which was used for fitting was set
at 10%, and the size of the second validation set V’, was 30 weeks.
The objective function of the DE algorithm now was simply the
ratio of the classification rate (based on V') divided by the NMSE.
After several runs the algorithm settled on the EV fit shown in
Fig. 6, which is a nice result indicating that the original fitting was
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Fig. 5. An example of a Gumbel distribution curve-fit after the Differential Evolution
algorithm was left to run, fitting on 1% of data.
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Fig. 6. An example of a Gumbel distribution curve-fit after the Differential Evolution
algorithm was left to run, fitting on 10% of data.

consistent. With the parameters of the Gumbel distribution iden-
tified, a threshold was calculated for a confidence interval of 99%,
meaning that 1% of the normal functions will be considered out-
liers. Fig. 7 shows the results of this novelty detection scheme on
the set of the test weeks. It is reminded that the test set contains 9
normal weeks which were not used neither in the training nor in
the estimation, the group of weeks which could not be identified,
and finally the abnormal as last. For the purposes of illustration the
negative logarithm of the density z is shown. It can be seen that
there is no misclassification in the 9 normal weeks, and the ma-
jority of the unidentified weeks are classified as normal. From the
abnormal weeks, 4 (out of 36) were incorrectly identified as
normal. Fig. 3 actually shows an example of a ‘bad’ week which was
correctly identified as abnormal.

3.3.1. Effect of random sampling on the wind turbine data

Since it was shown that sampling randomly (from the ‘normal’
{n} and ‘abnormal’ {a} class datasets) to create the training, vali-
dation and testing sets may have an effect on the fitting of the EV
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Fig. 7. Novelty detection at a weekly resolution on wind turbine data with extreme
function theory. The curves are ordered with weeks corresponding to the ‘normal’ set
first, and ‘abnormal’ set last.

CDFs, it was decided to perform a short analysis to investigate that
effect. The process of randomly creating the three sets {T;,V,Te}
was repeated 1000 times and the DE algorithm was run each time
in order to fit Gumbel CDFs. The second validation set was not used,
as this was a process to see the effect of the random sampling in the
parameters of the EV distributions. Fig. 8 shows a histogram of the
NMSE values of the best results from all the 1000 runs, and Fig. 9
shows a histogram of the actual parameters that were identified.
It can be seen that the NMSE values vary, but the majority of them
are between 1 and 5, it is noted here that an NMSE value below 5
indicates a good fit, and below 1 an excellent fit [33]. Although
there are cases with bad fitting, there are also cases with excellent
results.

Fig. 10 also shows a 3D plot of the identified parameters with the
NMSE values, and it can serve as a way to see where the parameters
should lie in order to have low NMSE values. It is also obvious that
the parameters may vary significantly, and that is probably the
effect of the nature of the data used, the logarithm values of the z
quantity given by Equation (13). Nevertheless, Fig. 10 can be used to
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Fig. 8. Histogram of NMSE values after 1000 runs of different sampling from the
turbine data.
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Fig. 10. A 3D plot of the parameters of the fitted Gumbel distributions versus the
NMSE after 1000 runs of different sampling from the turbine data. The surface slice
corresponds to NMSE of 3.

select constraint values for the identified parameters, especially
when an evolutionary algorithm like DE is used; for example there
is a higher concentration of lower NMSE values at the area where 1
lies between 20 and 200, and ¢ between 0 and 500. The whole
process was repeated with the DE algorithm fitting Weibull dis-
tributions, and the results were equivalent to those presented here
(with the Gumbell) so it was not considered necessary to display
those results.

4. Comparison with other conventional approaches
4.1. Conventional pointwise approach

The novelty detection results shown in Fig. 7 seem very prom-
ising, as the method was applied to actual data from wind turbines
with a good identification ratio. In order to properly assess the
method, and the idea of classifying functions instead of data points,
a comparison with a conventional pointwise approach was deemed
necessary. As mentioned earlier, most such approaches require a
quantity to be compared against a threshold, usually in combina-
tion with a statistical test. A very common such quantity is, or is
derived by, the residuals between the ‘normal’ model predictions
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and the actual data. This standard approach was followed here as
well, where Gaussian Processes were again the chosen algorithm
for modelling of the normal power curves. The residuals of the GP
predictions and the data from the weeks were monitored in a
similar approach as in Ref. [19] where control charts had been
applied. The critical values (threshold) for the monitoring of the
residuals were calculated exactly as in Ref. [19] with the help of EV
statistics. The overall approach can be summarised as follows:

o Create a training set T, = {q;, q; < {n}} sampled randomly from
the ‘normal’ set {n}, and train a GP.

e Use the residuals of the training set to fit EV distributions with
the help of the DE algorithm, and get critical values (upper and
lower control limits) for a desired level of confidence.

e Feed the ‘normal’ model with data from all the weeks and
monitor the residuals. Declare a week as not normal when the
number of outliers exceeds the level of confidence decided in
the previous step. The use of a testing set T, sampled from all
weeks, but different than the training set is recommended for
the proper assessment of the approach.

For the sake of comparison with the EFT approach here, the
training set used was identical to the one used in the EFT of the
earlier section (see Fig. 7). Fig. 11 displays a bar plot with the per-
centage of outliers produced when data from all the 125 available
weeks were fed to the fitted GP. As said above, the critical values
were chosen with the use of differential evolution and EV statistics,
and the Gumbel distribution was the choice again as it presented
the lower NMSE values in the fitting. The level of confidence chosen
was 99%, meaning that 1% of normal data are expected to go outside
the control limits. Fig. 11 also shows the 1% value for the percentage
of outliers, and it is clear that there are very few weeks which
present less than 1% of outliers, in fact there are only 15, something
which indicates a high number of false-positives. Of course, a fair
comparison with the EFT approach presented in the previous sec-
tion should make use of the exact testing set T, chosen there, so
Fig. 12 displays exactly that. It can be seen that in that testing set
there are only 4 weeks which contain less than 1% of outliers, and
therefore are declared as ‘normal’. From the 9 weeks sampled from
the ‘normal’ (class {n}) set, only 3 are correctly classified as ‘normal’
which makes the number of false-positives (FP) very high.
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Fig. 11. Bar plot displaying the percentage of outliers (threshold crossings) in all 125
weeks from the conventional pointwise approach.
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Fig. 12. Percentage of outliers in the testing set used in the EFT approach with the
conventional pointwise GP methodology. Critical value is set at 1%, and the weeks are
ordered with the ‘normal’ first and the ‘abnormal’ last.

4.2. Comparison with approaches using multivariate features

The EFT approach has been shown to significantly decrease the
false-positive (FP) rate when compared to a more conventional
pointwise approach where single values were used. It is also
compared here with a more conventional approach that makes use
of multivariate features instead of just single datapoints. For such
an attempt, GPs are again the chosen method of modelling the
‘normal’ power curves. In order to create multivariate features the
following steps were applied:

e Create a training set by randomly sampling n; points from a
‘normal’ week. Train a GP and then choose d equally spaced
wind speed points (between the minimum and maximum
actual wind speeds) and get the power predictions from the GP.
Repeat the process m times, and obtain another set of power
predictions for the exact same wind speeds as above.
Optionally, repeat the process for another ‘normal’ week. There
is now a multivariate feature containing predictions of power for
the exact same wind speeds of size b x n, where b is the number
of selected ‘normal’ weeks multiplied by m, which corresponds
to the normal state of the wind turbine.

Repeat the process of training GPs and obtain power predictions
for each of the 125 weeks. There is now a testing set of size
125 x d.

4.2.1. Outlier analysis

By following the above procedure, multivariate features of the
‘normal’ state can be created, and a test set for all weeks can be
assessed in terms of novelty. There could be various ways of
assessing the test set, but here outlier analysis [23] was the chosen
method. Every multivariate feature can be fused into a single
quantity called the Mahalanobis squared-distance and subse-
quently compared against a critical value (threshold) to be declared
as an outlier or not. The Mahalanobis squared-distance is given by,

D: = (Xg — X)T571 (Xt —i) (19)

where Xy is the potential outlier, X is the mean vector of the sample
observations, and S the sample covariance matrix. The threshold
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depends both on the dimension of the problem and on the number
of observations, and it can be exclusive or inclusive depending upon
whether the sample being tested was included or not in the
computation of the sample statistics (Mahalanobis squared-
distance here).

4.2.2. Monte Carlo threshold

The calculation of the threshold, for a multivariate case here, is
based on a Monte Carlo procedure which was followed for its
calculation exactly as in Ref. [23].

In order to compare directly this approach with the EFT, the
number of the random sample points n; used for the training of
each week was kept at 50 (as was done in the EFT approach). The
number of the dimensions of the features d varied between 10 and
30, since it was found that above 30 there were numerical issues in
the calculation of the Mahalanobis distance. For the creation of the
normal feature, the process of training on the same week was
repeated 10 times. Fig. 13 displays the Mahalanobis distances for all
125 weeks when the multivariate features were created with
ng = 50, m = 10, and d = 10. With those choices the normal feature
had a size of 60 x 10, since the training set used was identical to the
one used for the EFT approach (and contained 6 ‘normal’ weeks).
The exclusive threshold in this case was calculated to be 52. It can
be seen that there is a higher rate of false-negatives at 9 out of 36
when compared to the EFT approach (4/31), and more false-
positives (6/55) (see Fig. 13).

When the exact testing set which was used in the EFT method is
also applied here, the number of false-positives dropped to one (out
of 9), see Fig. 14. As was mentioned earlier, the values of the
dimension d tried were kept between 10 and 30, but they did not
produce any significant change to the classification results and so
they are not shown. The increase of the sampling points n, for the
training of the GPs may improve the number of the false-negatives
slightly. It should be noted that with this approach it is necessary to
train GPs for each week, and several times for the weeks of the
training set, whereas in the EFT approach the training is only done
once.

4.2.3. Calculating an EV threshold with DE for outlier analysis
The second approach for calculating a critical value for the
Mahalanobis squared-distance made use of the DE algorithm. In a
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Fig. 13. Outlier statistics for each of the 125 weeks after using multivariate features
created through GP regression. Monte Carlo threshold.

10° T T ; —— T T
: : not normal o

«< >

8 10%E 1

C

ol

2

D M

5 10° hormalé

»n :

2]

2,20 ]

8 10 ;

(=R S 1 VLN S N TR . S L AR 3 .k

©

©

e

8

=10 F E

10° ) . . L . . .
0 10 20 30 40 50 60 70

weeks

Fig. 14. Outlier statistics for the same testing set (weeks) used in the EFT approach
with a Monte Carlo threshold. Weeks are ordered with the ‘normal’ first and the
‘abnormal’ last.

similar way as in the EFT approach shown in the previous section,
the DE algorithm was used to fit EV distributions in the multivariate
feature representing the normal state of the turbines (normal
weeks). Again, all three EV distributions, Gumbel, Weibul and
Frechet were investigated, with the Gumbel giving the best results.
In order to have more values for fitting, the 20% higher values were
used (compared to the 10% used throughout the rest of the work).
Fig. 15 shows the Mahalanobis squared-distance for the same
testing set (weeks) as in the EFT approach. It can be seen that the
threshold is slightly lower than in the Monte Carlo approach (42
compared to 52), with no changes in the FP/FN rate.

4.2.4. Auto-associative neural networks

The outlier method implicitly assumes that normal condition
data are Gaussian. This can be a source of error, so it is useful to
compare with a more general approach. A general method that can
be applied in advanced unsupervised novelty detection analysis is
the auto-associative neural network (AANN) [2,34—36]. This neural
network architecture was motivated by Nonlinear Principal
Component Analysis (NLPCA) which is a robust and powerful sta-
tistical method for feature extraction and dimension reduction. The
AANN is a type of multi-layer perceptron MLP whose target outputs
are the same as the input. Generally, the AANN consists of five
layers including the input, mapping, bottleneck, demapping and
output layers [35—40]. A restriction of the mentioned topology is
that the bottleneck layer must have less neurons than the input and
output layers, and this performs compression as the AANN must
reproduce the input vector at the output.

When a trained AANN is given an input feature vector set
coming from an unprecedented state of the structure, a novelty
index n; described in the form of Euclidean distance will increase,

ni(y) =[ly -yl (20)

where y and y are each initial input and network output vectors
respectively. If the neural network learning was successful then
n;(y) =0 for all the training data set. Later on in testing, n;(y) may
significantly depart from zero indicating the presence of novelty i.e.
n;(y) # 0. The warning levels can be defined as 11; + as where n; and
g are, respectively the mean and standard deviation of all the values
of the novelty index over the training data. In statistical terms, the
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Fig. 15. Outlier statistics for the same testing set (weeks) used in the EFT approach by
using a threshold calculated with DE. Weeks are ordered with the ‘normal’ first and the
‘abnormal’ last.

parameter a controls the percentage of false-positives. For example,
if the distribution is purely Gaussian, then a value of 1.96 will give
estimates within warning levels of 95% probability. In this paper, a
is set equal to 2.58 giving a 99% confidence limit. Fig. 16 shows the
Euclidean distance between the output of the auto-associative
neural network and its target for the same testing set as in the
EFT approach. There is one FP (out of 9), and 5/31 FN.

4.2.5. Multivariate extreme value theory

Clifton et al. [41] have presented the use of extreme value theory
(EVT) for multivariate cases. This approach can also be applied here
in order to fit an extreme value distribution from the multivariate
features, and obtain critical values for arbitrary levels of confidence.
The multivariate features are assessed in terms of their Mahala-
nobis distance, and the approach is related to the exact extreme
function theory (EFT) shown in Ref. [24], with the difference that
multivariate features are used, and not functions. Fig. 17 shows the
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Fig. 16. Euclidean distance between the output of auto-associative neural network and
its input (target) for the same testing weeks as in the EFT approach.
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Fig. 17. Applying the multivariate extreme value threshold on the Mahalanobis dis-
tance on the same testing set as in the EFT approach. Weeks are ordered with the
‘normal’ first and the ‘abnormal’ last.

Mahalanobis distance for the same testing weeks as in the EFT
approach presented in the previous section, there are 2 out of 9
false-positives, and 8 out of 31 false-negatives which is higher than
the EFT case.

Table 1 shows the overall classification results of all the ap-
proaches that were compared. The FP rate corresponds to the
number of FP divided by the total number of normal weeks
assessed in the testing set, in this case 9, and the FN rate is the
number of FN divided by 31 (total number of ‘abnormal’ weeks in
the testing set). Classification error rate is simply the sum of FP and
FN divided by the total number of weeks assessed in the testing set
(here 40). Sensitivity or true positive rate (TPR) is the number of
true-positives (TP) divided by the total number of ‘abnormal’
weeks. TP are the weeks which were correctly classified as
‘abnormal’, hence sensitivity is a measure of how ‘sensitive’ is the
approach to damage (or ‘abnormality’ in general). Specificity (SPC)
or true negative rate is the number of true-negatives (TN) divided
by the total number of ‘normal’ weeks. TN are the correctly iden-
tified ‘normal’ weeks, so specificity is a measure of how likely the
method is to misclassify ‘normal’ weeks. Ideally, one would prefer a
method that performs with 100% in both specificity and sensitivity.
The exact formulas for all the error measures are given below,

FP rate = FPiiPTN (21)
FN rate = % (22)
CE rate = % (23)
sensitivity (TPR) = TPZ% (24)
specificity (SPC) = TNT—JI:]FP (25)

It is clear from Table 1 that the EFT approach is superior in the
overall classification error (10% when the rest are 15% and above),
but most importantly in the low number of FPs and the high



1500 E. Papatheou et al. / Renewable Energy 113 (2017) 1490—1502

Table 1
Classification error (CE) rates for all the approaches.
EFT Pointwise GP GP with Monte Carlo GP with DE threshold Multivariate EVT AANN

FP rate 0 0.67 0.11 0.11 0.22 0.11
FN rate 0.13 0 0.26 0.26 0.26 0.16
CE rate 0.1 0.15 0.23 0.23 0.25 0.15
TPR 0.87 1 0.74 0.74 0.74 0.84
SPC 1 033 0.89 0.89 0.78 0.89

number of both the sensitivity and specificity. As was seen in Fig. 12
the conventional pointwise approach is 100% sensitive, but has a lot
of FPs with a specificity of 33%.

Fig. 18 shows the use of PCA analysis for the visualisation of the
full multivariate test feature. The whole feature (corresponding to
all 125 weeks) is projected on its two first principal components in
order to assess how well each class (‘normal’, ‘abnormal’ and ‘un-
classified’) separates from each other. It can be seen that many of
the ‘unclassified’ weeks overlap with the ‘normal’, but some over-
lap with the ‘abnormal’. Also some ‘abnormal’ weeks overlap with
the ‘normal’, and this can provide a possible explanation for all the
results shown where it seemed that reducing the FP rate would
increase the FN rate. However, the EFT approach was shown to
reduce the FP by not sacrificing so much as the other approaches in
the number of FN.

It was mentioned earlier that sampling randomly for the crea-
tion of the sets may have an effect on the approaches, so all the
process of applying the EFT approaches, the pointwise, and the
multivariate features was repeated 50 times. Table 2 shows the
mean values of the classification error rates for all those 50 repe-
titions, and for all the methods. It can be seen that the EFT approach
displays approximately the same classification error (0.5% lower) as
the conventional pointwise approach, but has the lowest FP ratio as
can be seen in the 99% specificity value, where the pointwise GP
performs with only 43%. It is clear that the EFT reduces the FP to
almost zero without sacrificing the sensitivity (84%).

5. Discussion

The FP (false-positive) rates are higher than the test run shown
in the previous section, but it should be said that the comparison is
made on exactly the same testing set always, and with the same
settings (number of training, validation and second validation
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Fig. 18. Projection of the multivariate test feature on its first two principal
components.

curves) as in the case shown in Section 3.3. The approaches which
use multivariate features show more diversity in their results with
the repetition of the test than the EFT as can be clearly seen in the
histograms of Fig. 19 for the number of FP (Table 2 only shows mean
values). The increase of the sampling points from each week in the
creation of the multivariate features will improve slightly those
results, and it will reduce the FN rate slightly, but it was kept at 50
to maintain a fair comparison with the EFT. The process of creating
multivariate features demands the training of GPs several times,
and for each week, whereas with the EFT it is done only once. It
should also be mentioned that the process of training the AANN
requires careful consideration, and a lot of input from the user,
something which was not done during the 50 test runs, so some of
the results of the AANN could probably be improved - on average
the AANN is better than multivariate EVT. At the same time, the
same could be said for the EFT approach, as when the DE algorithm
was run, its settings were kept constant, meaning that there is no
absolute guarantee an optimal solution was always reached.
Overall, the confidence level used in the EFT corresponds to a
function, so in this case a ‘week’, and not a single datapoint cor-
responding to a ‘week’ as in a pointwise approach. The EFT
approach is ideal for a realistic problem of monitoring wind tur-
bines at a weekly resolution.

Avery important point here is the treatment of the unidentified
class {ns} of weeks. These were power curves which were not easily
identified by visual inspection as either ‘normal’ or ‘abnormal’, and
the need for objectivity would be paramount in any such real
attempt at monitoring. Fig. 4 shows two examples of such curves,
and it can certainly be debated whether they belong to the ‘normal’
or ‘abnormal’ class. It can be seen from Fig. 7 that the EFT approach
classifies most of those weeks as ‘normal’ with 6 out of 34 identified
as ‘abnormal’. It is clear from Fig. 12 that the conventional GP
pointwise approach classifies almost all (32 out of 34) as ‘abnormal’
meaning that it is very sensitive to a deviation from the normal
model, something shown in the high FP (false-positive) rate. Such a
method would not be ideal for monitoring real wind turbines, as
the high number of false alarms would increase the maintenance
costs and obviate the benefits of monitoring.

The original separation of the weeks into classes did contain a
degree of subjectivity, although reference curves were used, but it
should be said that any data originating from real structures under
real, and not laboratory conditions, are expected to have a certain
degree of variability which could challenge any novelty detection
scheme, and the extreme function theory shows enough promise in
dealing with that variability, and in the presence of ambiguous
power curves. It is also important that the functions assessed can be
represented by samples of different size which would be of value in
practice.

The effect of the random sampling in the creation of the training,
testing, validation sets (see Section 3.3) may influence the identi-
fication of the parameters of the Extreme Value (EV) distribution.
However, as the whole process of using and comparing the EFT
approach was repeated 50 times (with different training/testing
sets randomly created each time), and was shown to be robust (see
Table 2), it can be reasonably argued that the uncertainty due to



E. Papatheou et al. / Renewable Energy 113 (2017) 1490—1502 1501

Table 2
Mean classification error (CE) rates for all the approaches after 50 tests.
EFT Pointwise GP GP with Monte Carlo GP with DE threshold Multivariate EVT AANN
FP rate 0.01 0.57 0.16 0.14 0.23 0.29
FN rate 0.16 0 0.36 0.44 0.22 0.13
CE rate 0.125 0.13 0.32 0.37 0.23 0.17
(TPR) 0.84 0.99 0.64 0.56 0.78 0.86
(SPC) 0.99 0.43 0.84 0.86 0.77 0.71
30 to the data from the turbines in a weekly resolution, and clearly
” » 20 showed that it is superior in terms of the false-positive rate.
€ 20 = Another comparison made use of multivariate features which
% % were created again with the help of GPs and were assessed in four
210 2 10 different ways with the help of outlier analysis, extreme value
statistics and an auto-associative ANN, and confirmed that the
0 extreme function theory displays a low false-positive ratio, and
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Fig. 19. Histogram of the FP rate of some of the approaches after 50 tests.

random sampling is not important. The data used were real from a
period of 125 weeks including data from all seasons, so uncertainty
due to environmental effects or noise through the SCADA data did
not play an important factor. The sensitivity of the approach de-
pends entirely on the sensitivity of the power curve monitoring - as
it was used as an established methodology here. Ultimately, all the
approaches compared here were comparing a ‘normal’ power curve
from an ‘abnormal’, and it was shown that the EFT is ideal in
minimising false alarms without sacrificing a lot its sensitivity.

6. Conclusions

This paper presented a modified version of the extreme func-
tion theory (EFT) for the performance monitoring of a wind tur-
bine at a weekly resolution over a period of 125 weeks. The idea
was to test individual functions in terms of normality, and not just
individual points as would happen in a pointwise approach. The
functions were simply the power curves (power versus wind
speed) from weekly data. In this way a model of normality, rep-
resented here by a Gaussian process (GP), was built based on
weeks which were considered normal, and then a novelty detec-
tion scheme was successfully applied to a testing set. The main
idea is to test how likely a test function is to originate from the GP
representing the normal condition, and how extreme it is
compared to it. The testing set obtained normal, abnormal and
unidentified weeks (power curves). In the main case presented
here, there were no false-positives, meaning ‘normal’ weeks which
are wrongly identified as ‘abnormal’, and the majority of the un-
identified weeks were considered normal; there were also 4 out of
31 false-negatives, meaning weeks which were incorrectly classi-
fied as normal. The method was compared to a conventional
pointwise approach which made use of GPs again and exploited
the residuals created from the model of normality when compared

this can be attributed partly to the idea of classifying functions
(represented by time series data sets) and not just individual
points. The comparison of all the approaches was repeated for 50
experiments, and showed that the classification error of the
extreme function theory was on average low, although only
marginally lower than the pointwise approach. However, the small
number of normal weeks used in the testing set, when compared
to the number of abnormal weeks used, affects the overall clas-
sification error rate. The number of false-positives was also very
low, almost zero, for the extreme function theory which can be
translated to an excellent specificity, meaning how likely the
method is to misclassify normal curves, without sacrificing a lot of
sensitivity, as would happen with a simple raise of a threshold in
the conventional pointwise GP (equivalent to a control chart)
approach. It should be noted that the conventional pointwise
method used here already makes use of extreme value thresholds,
which tend to be higher than standard Gaussian thresholds.

Equally important is the unidentified class of weeks, which were
mostly identified as normal with the EFT approach, but ‘abnormal’
with the conventional pointwise GP methodology. The unidentified
weekly power curves can be arguably considered to lie at the core
of the importance of this work, since there is a need for objectivity
in their classification - otherwise a visual inspection would be
considered enough. Without any information regarding actual
faults on the wind turbines, the unidentified weeks cannot be
unambiguously confirmed as ‘normal’ or ‘abnormal’, although it is
possible that this would be challenging even with such information
available, so one would have to use the ‘normal’ and ‘abnormal’
testing sets to validate the approach, and subsequently choose to
either trust or discard the decision on the unidentified class. Based
on the high FP rate of the conventional pointwise method, and the
fact that almost all the entirety of the unidentified class was
considered ‘abnormal’ by said method, it does not seem the best for
the classification of the ambiguous weeks, whereas the EFT
approach seems better suited for that task.

Finally, the work presented here, does not address neither the
suitability nor the sensitivity of the power curve method, it is
applying it as an established monitoring approach, and in combi-
nation with the extreme function theory for the first time. Such a
performance monitoring approach may not be suitable to identify
sub-critical fatigue cracks on turbine blades, but can be neverthe-
less of practical value to the maintenance of a real wind farm, and as
it was shown, the extreme function theory can be very well suited
for the monitoring of turbines at a weekly resolution. In the future,
the theory can be extended to incorporate functions of disparate
sources, such as data acquired under different environmental
conditions, into the model of normality, and be of even more
practical value.



1502

E. Papatheou et al. / Renewable Energy 113 (2017) 1490—1502

Acknowledgment

The support of the UK Engineering and Physical Sciences
Research Council (EPSRC) through grant reference numbers EP/
J016942/1 and EP/K003836/2 is gratefully acknowledged.

References

[1]
2

3

[4

[5

6

[7

[8

(9

[10]

[11]

[12]

[13]

[14]

[15]

J.E. Doherty, Handbook on Experimental Mechanics, Society for Experimental
Mechanics, Inc., 1987. Ch. 12, Nondestructive Evaluation.

N. Dervilis, M. Choi, S. Taylor, R. Barthorpe, G. Park, C. Farrar, K. Worden, On
damage diagnosis for a wind turbine blade using pattern recognition, J. Sound
Vib. 333 (6) (2014) 1833—1850.

W. Yang, Z. Lang, S. Tian, Condition monitoring and damage location of wind
turbine blades by frequency response transmissibility analysis, IEEE Trans.
Ind. Electron. PP (99) (2015), http://dx.doi.org/10.1109/TIE.2015.2418738,
1-1.

J. Tang, S. Soua, C. Mares, T.-H. Gan, An experimental study of acoustic
emission methodology for in service condition monitoring of wind turbine
blades, Renew. Energy 99 (2016) 170—179, http://dx.doi.org/10.1016/
j.renene.2016.06.048. http://www.sciencedirect.com/science/article/pii/
S0960148116305729.

I. Antoniadou, Accounting for Nonstationarity in the Condition Monitoring of
Wind Turbine Gearboxes, Ph.D. thesis, 2013.

W.J. Staszewski, K. Worden, Classification of faults in gearboxes - pre-
processing algorithms and neural networks, Neural Comput. Appl. 5 (3)
(1997) 160—183.

Y. Lei, J. Lin, Z. He, MJ. Zuo, A review on empirical mode decomposition in
fault diagnosis of rotating machinery, Mech. Syst. Signal Process. 35 (1) (2013)
108—126.

D. Yang, H. Li, Y. Huy, J. Zhao, H. Xiao, Y. Lan, Vibration condition monitoring
system for wind turbine bearings based on noise suppression with multi-
point data fusion, Renew. Energy 92 (2016) 104—116, http://dx.doi.org/
10.1016/j.renene.2016.01.099. http://www.sciencedirect.com/science/article/
pii/S0960148116300994.

Z. Hameed, Y. Hong, Y. Cho, S. Ahn, C. Song, Condition monitoring and fault
detection of wind turbines and related algorithms: a review, Renew. Sustain.
Energy Rev. 13 (1) (2009) 1-39.

F.P. Garcia Marquez, A.M. Tobias, J.M. Pinar Pérez, M. Papaelias, Condition
monitoring of wind turbines: techniques and methods, Renew. Energy 46
(2012) 169—-178.

W. Yang, R. Court, J. Jiang, Wind turbine condition monitoring by the approach
of SCADA data analysis, Renew. Energy 53 (2013) 365—376, http://dx.doi.org/
10.1016/j.renene.2012.11.030. http://www.sciencedirect.com/science/article/
pii/S0960148112007653.

A. Kusiak, H. Zheng, Z. Song, On-line monitoring of power curves, Renew.
Energy 34 (6) (2009) 1487—1493.

R. Bi, C. Zhou, D.M. Hepburn, Detection and classification of faults in pitch-
regulated wind turbine generators using normal behaviour models based on
performance curves, Renew. Energy 105 (2016) 674—688, http://dx.doi.org/
10.1016/j.renene.2016.12.075. http://linkinghub.elsevier.com/retrieve/pii/
S0960148116311351.

V. Thapar, G. Agnihotri, V. Sethi, Critical analysis of methods for mathematical
modelling of wind turbines, Renew. Energy 36 (11) (2011) 3166—3177.

T. Ouyang, A. Kusiak, Y. He, Modeling wind-turbine power curve: a data
partitioning and mining approach, Renew. Energy 102 (2017) 1-8, http://
dx.doi.org/10.1016/j.renene.2016.10.032. http://www.sciencedirect.com/
science/article/pii/S0960148116308989.

[16]

[17]
[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[33]
[34]
[35]
[36]
1371
[38]
[39]

[40]

[41]

S. Gill, B. Stephen, S. Galloway, Wind turbine condition assessment through
power curve copula modeling, IEEE Trans. Sust. Energy 3 (1) (2012) 94—-101,
http://dx.doi.org/10.1109/TSTE.2011.2167164.

A. Kusiak, A. Verma, Monitoring wind farms with performance curves, IEEE
Trans. Sust. Energy 4 (1) (2013) 192—199.

D.C. Montgomery, Introduction to Statistical Quality Control, fourth ed., John
Wiley & Sons, 2001.

E. Papatheou, N. Dervilis, A.E. Maguire, I. Antoniadou, K. Worden,
A performance monitoring approach for the novel Lillgrund offshore wind
farm, IEEE Trans. Ind. Electron. 62 (10) (2015) 6636—6644.

S.W. Doebling, C.R. Farrar, M.B. Prime, D. Shevitz, Damage Identification and
Health Monitoring of Structural and Mechanical Systems from Changes in
Their Vibration Characteristics: a Literature Review, Tech. rep., Los Alamos
National Laboratory LA-13070-MS, 1996.

H. Sohn, C.R. Farrar, F.M. Hemez, D.D. Shunk, D.W. Stinemates, B.R. Nadler,
JJ. Czarnecki, A Review of Structural Health Monitoring Literature: 1996-
2001, Tech. rep., Los Alamos National Laboratory LA-13976-MS, 2004.

C.R. Farrar, K. Worden, Structural Health Monitoring: a Machine Learning
Perspective, John Wiley & Sons, 2013.

K. Worden, G. Manson, N.RJ. Fieller, Damage detection using outlier analysis,
J. Sound Vib. 229 (3) (2000) 647—667.

D.A. Clifton, L. Clifton, S. Hugueny, D. Wong, L. Tarassenko, An extreme
function theory for novelty detection, IEEE J. Sel. Top. Signal Process. 7 (1)
(2013) 28—37.

C.E. Rasmussen, C. Williams, Gaussian Processes for Machine Learning. 2006,
vol. 38, The MIT Press, Cambridge, MA, USA, 2006, pp. 715—719.

C. M. Bishop, et al., Neural Networks for Pattern Recognition.

L.T. Nabney, NETLAB: Algorithms for Pattern Recognition, Springer, 2004.

R. Fisher, L. Tippett, Limiting forms of the frequency distributions of the
largest or smallest members of a sample, Proc. Camb. Philos. Soc. 24 (1928)
180—-190.

E. Castillo, Extreme Value Theory in Engineering, Academic Press, Inc., 1988.
R. Storn, R. Price, Differential evolution a simple and efficient heuristic for
global optimisation over continuous spaces, ]. Glob. Optim. 11 (1997)
341-359.

K. Worden, G. Manson, H. Sohn, C. Farrar, Extreme value statistics from dif-
ferential evolution for damage detection, in: Proceedings of the 23rd Inter-
national Modal Analysis Conference, 2005.

H.W. Park, H. Sohn, Parameter estimation of the generalized extreme value
distribution for structural health monitoring, Probabilistic Eng. Mech. 21 (4)
(2006) 366—376.

K. Worden, G.R. Tomlinson, Nonlinearity in Structural Dynamics: Detection,
Identification and Modelling, IOP Publishing Ltd, 2001.

C.M. Bishop, Neural Networks for Pattern Rcognition, Oxford University Press,
1995.

H. Bourlard, Y. Kamp, Auto-association by multilayer perceptrons and singular
value decomposition, Biol. Cybern. 59 (4) (1988) 291—-294.

M. Scholz, R. Vigdrio, Nonlinear PCA: a new hierarchical approach, in: Proc.
ESANN, 2002, pp. 439—444.

N. Japkowicz, S.J. Hanson, M.A. Gluck, Nonlinear autoassociation is not
equivalent to pca, Neural Comput. 12 (3) (2000) 531—-545.

M.A. Kramer, Nonlinear principal component analysis using autoassociative
neural networks, AIChE J. 37 (2) (1991) 233—243.

K. Worden, Structural fault detection using a novelty measure, J. Sound Vib.
201 (1) (1997) 85—101.

L. Tarassenko, A. Nairac, N. Townsend, I. Buxton, P. Cowley, Novelty detection
for the identification of abnormalities, Int. J. Syst. Sci. 31 (11) (2000)
1427-1439.

D.A. Clifton, S. Hugueny, L. Tarassenko, Novelty detection with multivariate
extreme value statistics, J. Signal Process. Syst. 65 (3) (2011) 371—-389.


http://refhub.elsevier.com/S0960-1481(17)30625-0/sref1
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref1
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref2
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref2
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref2
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref2
http://dx.doi.org/10.1109/TIE.2015.2418738
http://dx.doi.org/10.1016/j.renene.2016.06.048
http://dx.doi.org/10.1016/j.renene.2016.06.048
http://www.sciencedirect.com/science/article/pii/S0960148116305729
http://www.sciencedirect.com/science/article/pii/S0960148116305729
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref5
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref5
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref6
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref6
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref6
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref6
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref7
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref7
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref7
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref7
http://dx.doi.org/10.1016/j.renene.2016.01.099
http://dx.doi.org/10.1016/j.renene.2016.01.099
http://www.sciencedirect.com/science/article/pii/S0960148116300994
http://www.sciencedirect.com/science/article/pii/S0960148116300994
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref9
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref9
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref9
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref9
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref10
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref10
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref10
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref10
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref10
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref10
http://dx.doi.org/10.1016/j.renene.2012.11.030
http://dx.doi.org/10.1016/j.renene.2012.11.030
http://www.sciencedirect.com/science/article/pii/S0960148112007653
http://www.sciencedirect.com/science/article/pii/S0960148112007653
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref12
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref12
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref12
http://dx.doi.org/10.1016/j.renene.2016.12.075
http://dx.doi.org/10.1016/j.renene.2016.12.075
http://linkinghub.elsevier.com/retrieve/pii/S0960148116311351
http://linkinghub.elsevier.com/retrieve/pii/S0960148116311351
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref14
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref14
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref14
http://dx.doi.org/10.1016/j.renene.2016.10.032
http://dx.doi.org/10.1016/j.renene.2016.10.032
http://www.sciencedirect.com/science/article/pii/S0960148116308989
http://www.sciencedirect.com/science/article/pii/S0960148116308989
http://dx.doi.org/10.1109/TSTE.2011.2167164
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref17
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref17
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref17
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref18
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref18
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref18
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref19
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref19
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref19
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref19
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref20
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref20
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref20
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref20
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref21
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref21
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref21
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref22
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref22
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref22
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref23
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref23
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref23
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref24
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref24
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref24
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref24
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref25
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref25
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref25
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref27
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref28
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref28
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref28
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref28
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref29
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref30
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref30
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref30
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref30
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref32
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref32
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref32
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref32
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref33
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref33
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref34
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref34
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref35
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref35
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref35
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref37
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref37
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref37
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref38
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref38
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref38
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref39
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref39
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref39
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref40
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref40
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref40
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref40
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref41
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref41
http://refhub.elsevier.com/S0960-1481(17)30625-0/sref41

	Performance monitoring of a wind turbine using extreme function theory
	1. Introduction
	2. Extreme function theory
	2.1. Overview
	2.2. Gaussian process regression algorithm
	2.3. Extreme function theory with GP regression

	3. Application of the extreme function theory on wind turbines: data description and general methodology
	3.1. Description of the data and creation of class datasets
	3.2. General methodology for the classification of power curves with extreme function theory on wind turbine data
	3.3. Fitting EV distributions with DE
	3.3.1. Effect of random sampling on the wind turbine data


	4. Comparison with other conventional approaches
	4.1. Conventional pointwise approach
	4.2. Comparison with approaches using multivariate features
	4.2.1. Outlier analysis
	4.2.2. Monte Carlo threshold
	4.2.3. Calculating an EV threshold with DE for outlier analysis
	4.2.4. Auto-associative neural networks
	4.2.5. Multivariate extreme value theory


	5. Discussion
	6. Conclusions
	Acknowledgment
	References


