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Abstract 

 

OBJECTIVE: To conduct a systematic review of published research on the use of discrete event 

simulation (DES) for resource modelling in health technology assessment (HTA). Resource modelling 

(RM) is broadly defined as incorporating and measuring effects of constraints on physical resources (e.g. 

beds, doctors, nurses) in HTA models. 

METHODS: Systematic literature searches were conducted in academic databases (JSTOR, SAGE, 

SPRINGER, SCOPUS, IEEE, Science Direct, PUBMED, EMBASE) and grey literature (Google Scholar, NHS 

journal library), enhanced by manual searchers (i.e. reference list checking, citation searching and hand 

searching techniques). 

RESULTS: The search strategy yielded 4,117 potentially relevant citations. Following the screening and 

manual searches, 10 articles were included. Reviewing these articles provided insights into the 

applications of RM: firstly, different types of economic analyses, model settings, RM and cost-

effectiveness analysis (CEA) outcomes were identified. Secondly, variation in the characteristics of the 

constraints such as types and nature of constraints, sources of data for the constraints were identified. 

Thirdly, it was found that including the effects of constraints caused the CEA results to change in these 

articles. 

CONCLUSION: The review found that DES proved to be an effective technique for RM but there were 

only a small number of studies applied in HTA. However, these studies showed the important 

consequences of modelling physical constraints and point to the need for a framework to be developed 

to guide future applications of this approach. (230 words) 
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Key Points for Decision Makers 

 Economic evaluation studies in health care typically ignore the short-term constraints on physical 

resources (e.g. doctors, nurses) which can lead to incorrect results. 

 Discrete Event Simulation is an effective tool for modelling the effects of constraints but there were 

only a small number of studies applied in health technology assessment (HTA). 

 Further research is required to examine the possible developments for detailed modelling of the 

resource constraints in HTA. 

 

1. Introduction 

 

Economic evaluation in health care typically takes the long-term perspective, where all inputs are 

assumed to be unconstrained, i.e. the resources required by the new technology are immediately 

available and deployed optimally [1]. However, there may be constraints existing within the health 

system that may cause unintended consequences. For example, increasing clinic throughput/demand 

when the number of consulting rooms is constrained may require longer clinic opening hours and the 

need for overtime payments or in the long-run, such changes could be made through the provision of 

more consultation rooms.  These higher costs can lead to slow implementation as providers struggle to 

deliver the necessary changes at the costs suggested by the economic evaluation.  It is also possible that 

the higher costs change the incremental cost-ĞĨĨĞĐƚŝǀĞŶĞƐƐ ƌĂƚŝŽ ŽĨ Ă ƚĞĐŚŶŽůŽŐǇ ƐƵĐŚ ƚŚĂƚ ŝƚ ŝƐŶ͛ƚ ĐŽƐƚ-

effective and the implemented changes produce a negative net monetary benefit. 

 

Within health technology assessment (HTA), these issues of implementation and feasibility are typically 

either ignored or captured qualitatively. It has been argued that a formal quantitative assessment of 

diffusion, resource use and resource constraints [2], ƚĞƌŵĞĚ ͚ƌĞƐŽƵƌĐĞ ŵŽĚĞůůŝŶŐ͕͛ is required in assisting 

decision makers to determine whether projected uptake is feasible. Resource modelling (RM) involves 

estimating the numbers of different physical resources required over time within the pathway for each 

intervention. Thokala et al. [2] broadly classify resource types into two categories: (a) single-use 

resources which are items that can only be used once, such as pharmaceuticals, assays for diagnostic 

tests and some equipment such as masks, plasters and syringes; and (b) re-usable (or multiuse) 

resources which are those that are occupied for a given time period, but can be redeployed such as staff 

(e.g. doctors, nurses, consultants, laboratory technicians, administrative personnel) and equipment (e.g. 

hospital beds, intensive care units, ambulances, scanners). Given our focus on physical resources (e.g. 

doctors, nurses, beds, etc.), monetary resource constraints are not included in our definition of RM. 

 

Modelling can be used in understanding whether capacity constraints can meet the resource demand. 

For single-use resources which deplete with time, it is important to understand whether there is enough 

capacity for the entire target population. This can be assessed with traditional HTA modelling methods 

(such as decision trees or Markov models) by linking the health state to resource use in order to 

estimate the overall resources required. For re-usable (or occupied) resources, it is important to 

understand the fluctuation in the resource availability to estimate whether there is enough capacity to 

meet the rate of demand (e.g. arrival rate of patients) and their time of occupancy (e.g. length of stay in 

hospitalisation). However, traditional HTA modelling methods are not suitable for modelling detailed 
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resource usage over time [3], and there is a need for using advanced simulation techniques such as 

discrete event simulation (DES). 

 

DES is a flexible modelling technique that can model the behaviour of a complex system using a 

sequence of well-defined events, focusing on individual entities (e.g. patients) moving through the 

system, and the changes in the states of the entities at discrete time points [3,4]. Importantly, DES 

provides the capability to model resource constraints explicitly [5,6,7]. It is therefore a useful tool for 

modelling re-usable (or occupied) resource constraints, as proven in its widespread use in other sectors 

such as operational research, engineering and scheduling [8-11]. The use of DES is also gaining 

momentum within the field of HTA itself [12-14]. There has been a recent systematic review on the use 

of DES for HTA [15], which identified 42 relevant studies. However, they excluded the studies that 

modelled capacity constraints.   

 

To our knowledge, no study has attempted to review rigorously and systematically past applications of 

DES for constrained resource modelling in HTA. In this review, our aim was to systematically identify the 

economic evaluation studies using DES while accounting for (physical) resource constraints. This paper 

provides an overview of the methods and the results of the systematic review. The next section presents 

the methods used for identifying the relevant studies. Section 3 presents the synthesis of the studies at 

an overview level and a more detailed analysis. Section 4 presents a discussion of the key issues 

identified.  

 

2. Methods 

2.1 Literature searches 

 

To identify relevant articles, a systematic literature search was conducted in 8 academic databases 

(JSTOR, SAGE, SPRINGER, SCOPUS, IEEE, Science Direct, PUBMED, EMBASE) and 2 other sources for grey 

literature (Google Scholar, NHS journal library) up till May 2017. Based on the definition of RM proposed 

by Thokala and colleagues [2] - the quantitative assessment of technology diffusion curves, their related 

resource requirements and their capacity constraints - building block techniques [16] were used to 

identify a list of keywords related to DES based RM in HTA, and to develop the search strategies. The 

final search strategies used in this review are presented in Appendix 1. These searches were 

supplemented with manual searches using the reference list checking, citation searching and hand 

searching techniques [17, 18]. 

  

2.2 Study selection 

 

Two reviewers screened at the title and abstract level all articles found using the search strategy, after 

removing duplicates. Full texts of remaining articles were critically assessed and included if both 

reviewers found them relevant. The appraisal was carried out based on the following inclusion criteria: 

selected articles (a) reported the application of simulation based RM in HTA (i.e. measuring the effects 

of constraints on physical resources, when conducting budget impact analysis (BIA) or CEA) using the 

DES technique, and (b) were written in English language. Studies were excluded if they were not related 
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to HTA, did not use DES, were reviews of other studies or did not assess the effects of constraints on 

physical resources. 

 

2.3 Data extraction and Analysis 

 

While reviewing the included articles, data were extracted as follows: study background (e.g. case study, 

applied HTA technique, data source for simulation modelling), and details of the constraints (e.g. the 

type of constraint, nature of the constraints). Thus, the data extracted from the articles were 

synthesised into two separate sections ʹ an overview of the included articles and a detailed description 

of the constraints. The information gathered from these syntheses was used to identify the common 

themes and outcomes for discussion in this review. 

 

3. Results 

3.1 Searches and sifting 

 

The search yielded 4,117 potentially relevant citations. After elimination by title and duplicates, 90 

articles were retained for screening. The first level of screening excluded all irrelevant articles by 

scanning the abstracts, which led to the exclusion of 63 articles ʹ 13 articles were not related to HTA, 34 

did not use DES and 16 were reviews of other studies.  

 

The second level of screening consisted of a full text assessment of the remaining 27 articles, which led 

to the exclusion of 18 articles ʹ 2 articles were not related to HTA, 1 article was a review and 15 did not 

assess the effects of constraints on physical resources. The remaining 9 articles were retained and 

supplemented with manual searches, using reference list checking, citation searching and hand 

searching techniques, which identified one further article. The results from the sifting are presented 

visually as a PRISMA diagram in Figure 1.  
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Number of articles excluded at title level

(n = 4,002)

Total number of potentially relevant articles 

identified via academic database searching

(n = 1,154)

Total number potentially relevant articles 

identified via other sources (Grey literature)

(n = 2,963)

Total number of articles for review

(n = 115)

Number of records screened

(n = 90)

Number of records excluded at

abstract level

(n = 63)
Number of full-text articles assessed for 

eligibility

(n = 27)

Eligible articles for literature review

(n = 9)

Number of duplicate articles removed

(n = 25)

Number of articles excluded at

full-text level

(n = 18)

Number of articles included for literature 

review

(n = 10)

Total number of potentially relevant articles 

identified via manual searchers

(n = 42)

Number of articles excluded at

abstract and full-text level

(n = 41)

+9

+1

 
Figure 1: PRISMA diagram 

 

3.2 Data extraction 

3.2.1 Overview of the included articles 

 

Table 1 provides a general overview of the 10 articles included in this review. Notwithstanding the 

diversity of applications, there are five key themes that can be identified from this overview: type of 

analysis performed, model setting, type of CEA outcomes, type of intervention and outcomes estimated 

from RM. 

 

Table 1: The 10 articles included 
No. Study Case study Intervention assessed    Type of 

analysis 

Setting Outcomes for CEA 

 

Type of 

intervention 

Outcome of RM 

1 [19] Laparoscopic 

Cholecystectom

y surgery for 

Anaesthesia 

care. 

Strategy protocols for 

the SOR versus ORF.  

Cost-

effectiveness 

analysis 

Organisational 

level 

 Cost / Patient 

throughput 

Short-term 

outcomes 

(10h/d) 

System 

changes: 

reorganizing 

surgical 

practices. 

Total flow 

time, waiting 

time, patient 

throughput, 

resource 

utilisation 

2 [20] General surgery, 

gynaecology, 

and urology 

surgery for 

Anaesthesia 

Strategy protocols for 

the SOR versus ORF + 

perioperative-staffing 

system (i.e. 5 cost 

allocation scenarios, 

Cost-

effectiveness 

analysis 

Organisational 

level 

 Cost / Patient 

throughput 

Short-term: 

outcomes 

(10h/d) 

System 

changes: 

reorganizing 

surgical 

practices 

Total flow 

time, waiting 

time, patient 

throughput, 

resource 
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care. consisting of 3 phases). and 

workflow. 

utilisation 

3 [21] Stent treatment 

for coronary 

heart disease. 

Drug-eluting stent 

versus bare-metal stent 

treatments for 4 

patient groups. 

Cost-

effectiveness 

analysis & 

budget 

impact 

analysis 

Organisational 

level 

 Cost / QALYs 

Long-term 

outcomes 

(7yrs) 

System 

changes: 

treatment 

allocation 

scenarios. 

Waiting time, 

patient 

throughput, 

resource 

utilisation, 

queue length 

4 [22] Glaucoma 

clinical service. 

Alternative treatments 

(i.e. medical, laser or 

surgical techniques) 

and management 

strategies (i.e. follow-

up visit times, booking 

cycle length). 

Cost-

effectiveness 

analysis 

Organisational 

level 

 Cost / QALYs 

Long-term 

outcomes 

(5yrs) 

System 

changes: 

alternative 

follow- 

up times, 

treatment 

pathways and 

booking 

cycles. 

Waiting time 

5 [23] Orthopaedic 

services 

(OSPC and 

TOMS). 

Alternative scenarios 

for delivering increase 

semi- and non-urgent 

orthopaedic outpatient 

services  

OSPC (without 

additional surgical 

capacity) and TOMS 

(with and without 

additional surgical 

capacity) by an 

additional 25-125 

patients per month. 

Cost-

effectiveness 

analysis 

Organisational 

level 

 Cost / QALYs 

Long-term 

outcomes 

(5.25yrs) 

System 

changes: 

reorganizing 

orthopaedic 

service. 

Waiting time, 

patient 

throughput, 

resource 

utilisation, 

queue length 

6 [24] Treatment and 

further 

prevention of 

CHD. 

Note: Refer to 

[25] for model 

details. 

Increasing level of 

alternative drugs used 

for secondary 

prevention of CHD (i.e. 

statins, aspirin, beta 

blockers, angiotensin 

converting enzyme 

inhibitors). 

Cost-

effectiveness 

analysis 

National level 

 

 Cost / Lys 

Long-term 

outcomes 

(20yrs) 

New 

treatment: 

increasing 

the uptake 

of one drug, 

while the 

comparators 

remain 

constant. 

Waiting time, 

queue length 

7 [26] Ultrasound 

screening for the 

DDH in primary 

care. 

Varying by locations 

(urban vs rural areas) 

and 3 screener 

strategies/ scenarios. 

Cost-

effectiveness 

analysis 

National level  Cost / 

Successful 

DDH 

detection. 

Short-term 

outcomes 

(3h/d) 

System 

changes: 

alternative 

screener 

strategies. 

Waiting time, 

resource 

utilisation 

8 [27] Robotic and 

laparoscopic 

prostatectomy 

treatment 

service for 

Alternative surgical 

techniques (standard 

versus robotic) and 

surgical capacity per 

year. 

Cost-

effectiveness 

analysis 

National level  Cost / QALYs 

Long-term 

outcomes 

(10yrs) 

New 

services: 

alternative 

surgical 

techniques. 

Total flow 

time, waiting 

time, patient 

throughput 
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localised 

prostate cancer. 

 

9 [28] Blood collection 

systems (fixed 

and mobile 

sites) 

Alternative 

configurations for 

capacity planning of 

human resources and 

donor appointment 

strategies. 

Cost-

effectiveness 

analysis 

National level  Cost / service 

level (i.e. 

percentage of 

entities served 

within a 

targeted 

waiting time). 

Short-term 

outcomes 

(8h/d) 

System 

changes: 

reorganizing 

blood 

collection 

systems. 

Total flow 

time, waiting 

time, waiting 

probability, 

patient 

throughput, 

resource 

utilisation, 

queue length, 

probability of 

abandonment, 

service level 

10 [29] Orthopaedic 

service 

Note: 3 DES 

models are 

developed. 1 

with DQ and 2 

without). 

UC versus OSPC. Cost-

effectiveness 

analysis 

National level  Cost / QALYs 

Long-term 

outcomes 

(5.25yrs) 

System 

changes: 

reorganizing 

orthopaedic 

service. 

Total flow 

time, waiting 

time, queue 

length 

Abbreviations: SOR, standard operating room; ORF, operating room of the future; QALY, quality-adjusted life year; OSPC, orthopaedic physiotherapy 

screening clinic and multidisciplinary treatment service; TOMS, traditional orthopaedic medical services; CHD, coronary heart disease; DDH, 

developmental dysplasia of the hip; DQ, dynamic queuing; UC, Usual orthopaedic care. 

 

RM in HTA has been performed at different settings with two main categories emerging ʹ organisational 

level (i.e. RM performed at a single location) and national level (i.e. RM performed at an aggregate 

level). Out of the 10 articles, 5 studies applied RM at an organisational level [19-23] and 5 at a national 

level [24, 26-29].  

Regarding the type of analyses, out of the 10 articles identified in the systematic review, only 1 article 

[21] includes RM aspects (i.e. resource constraints) in both CEA and BIA models, while the rest of the 

articles focus solely on CEA. There is a diversity of outcomes assessed alongside traditional CEA (defined 

as those that include QALYs, disability-adjusted life year (DALYs) or life-year saved (LYs) [30]). As 

presented in table 2, the majority of the studies solely reported CEA, either by measuring the effects 

using QALYs [21-23, 27, 29] or LYs [24], while the rest of the studies focused on broader outcomes such 

as patient throughput per day [19, 20]. Out of the 10 articles identified, only 4 of these studies assessed 

short-term outcomes (i.e. maximum number of cases treatable in 3, 8 or 10 hours) [19, 20, 28], while 

the rest of the studies only focus on long-term outcomes (e.g. costs and QALYS over 5-20 years). 

 

There are diverse types of interventions assessed within the reviewed articles. Three categories 

emerged ʹ system changes (e.g. reorganizing surgical practices), new services and new treatments. Out 

of the 10 articles, 8 studies assessed system changes [19-23, 26, 28, 29], 1 assessed a new service that 

offers robotic surgery [27] and 1 assessed increasing the uptake of secondary prevention drugs [24]. 

 

Alongside the traditional economic analyses outputs, the studies also presented a set of RM outcomes 

(or key performance indicators). The outcomes that were observed in these studies included total flow 
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time [19, 20, 27-29], waiting time [19-24, 26-29], waiting probability [28], patient throughput [19-21, 23, 

27, 28], resource utilisation [19-21, 23, 26, 28], queue length [21, 23, 24, 28, 29], probability of 

abandonment [28], and service level [28]. In one study observed [22], only one RM outcome was 

mentioned (waiting time); the remainder of these studies reported multiple outcomes.  
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Table 2 presents the details of the RM constraints for the 10 articles included in this review, which include the type of constraints, nature of 

constraints, sources of data constraints, uncertainty around the constraints, model performance evaluation of outputs, and the effects of 

constraints on CEA results. 

 

Two main categories emerge of constraints in the studies ʹ capacity constraints (i.e. constraints on the quantity of resources) or throughput 

constraints. In studies that include capacity constraints, the constraints on physical resources are explicitly modelled. For example, Stahl et al. 

[19] limited the availability of resources (e.g. nurses or surgeons) by explicitly modelling the capacity constraints.  However, in some studies this 

is not the case, the capacity constraints are not modelled overtly but rather at a higher level of abstraction indirectly using throughput measures.  

For example, one study [21] limited the throughput to thirty-six patients per day as a result of the constraints in the availability of resources (e.g. 

doctors, specialist nurses) to meet daily demand. That is, rather than modelling the capacity constraints of resources explicitly, the potential 

effect of resource constraints is modelled as limited patient throughput. Out of the 10 studies identified, 2 examined the effects against capacity 

constraints [19, 20], 6 examined the effect against throughput constraints [21-24, 27, 29] and 2 studies examined the effects of both capacity 

and throughput constraints [26, 28].  

 

Table 2: Details of the resource modelling constraints presented from included articles 
No. Study List of resource Characteristics of the Constraints  Conclusions from the study (i.e. effects 

of constraints on CEA results) Description Experiment 

(What-if 

analysis) 

Type of 

constraint 
*1 

Nature of 

constraint 
*2 

Uncertainty 

around 

constraint in 

the model and 

analysis 

Model 

performance 

evaluation of 

outputs 
*3

 

Data source for 

constraint 

 

1 [19] ANN, OR nurse, 

surgeon. 

 All 3 

resources 

were 

constrained 

The number 

of ANNs were 

varied but the 

other two 

resources 

were kept 

fixed. 

Capacity Fixed 

(staffing 

mixed 

between shifts 

and 

availability of 

OR remains 

constant). 

DSA 

(increasing 

the inter 

arrival time) 

Real-world 

comparison, 

face 

validation. 

MŽĚĞůůĞƌ͛Ɛ 
assumption. 

 Redesigning ORF changes the 

waiting time. 

 Adding additional ANN in ORF 

increases the cost and throughput 

of PC/d. 

 ORF system works best when 

schedule of patients is greater or 

equal to 5 patients per day, while 

no longer effective if the hand-off 

delay >15 minutes. 

2 [20] Pre-operative 

nurse, certified 

registered nurse 

anaesthetist, OR 

 2 out of 9 

resources 

were 

constrained 

(OR nurse, 

The 

availability of 

FTE staffs 

were varied 

for all two 

Capacity Fixed 

(staffing 

mixed 

between shifts 

remains 

DSA 

(increasing 

FTE staffs). 

Real-world 

comparison. 

MŽĚĞůůĞƌ͛Ɛ 
assumption. 

 Redesigning ORF improves patient 

flow by decreasing waiting time. 

 Increasing the FTE staffs in ORF 

increases the cost and throughput 

of PC/d. 
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nurse, OR 

technical staff, 

OR support staff, 

OR 

administrator, 

biomedical 

engineering 

technician, ANN, 

post-operative 

nurse. 

ANN) resources. 

 

constant).  CEA suggest additional costs 

incurred by higher staffing ratios in 

ORF are likely to be offset by the 

increase in productivity. 

 The ICER changes when using 

different cost-allocation scenarios 

on resources. 

3 [21] Bed.  Resource 

was 

indirectly 

constrained 

 Limiting the 

number of 

daily patients 

for 

treatment 

was 

considered 

as the 

constraint 

Limiting 

number of 

stented 

patients 

treated to 36 

per day. 

Throughput Fixed 

(maximum 

number of 

patients 

accepted per 

day remains 

constant). 

N/A N/A MŽĚĞůůĞƌ͛Ɛ 
assumption. 

 The delay time incurred in the 

constrained scenario. 

 Limiting throughput for stented 

patient increases the treatment 

cost of PC/d (i.e. adding cost for 

alternative dugs until stent is 

given), while decreasing the QALYs 

(i.e. additional delay increased the 

risk of having angina symptoms 

(e.g. chest pain, etc.)). 

 The results of the ICERs were 

found dominated for most of the 

constraint scenarios. 

4 [22] Doctors, 

administration 

officers, 

specialist nurse, 

registrar. 

 Resources 

were 

indirectly 

constrained 

 Limiting the 

number of 

daily patients 

for 

treatment 

considered 

as the 

constraint 

Limiting 

number 

stented 

patients using 

appointment 

scheduling. 

Throughput Time variant 

(different 

number of 

patients 

accepted per 

day). 

N/A Model 

calibration. 

MŽĚĞůůĞƌ͛Ɛ 
assumption, 

patient logs. 

 DĞůĂǇŝŶŐ ƉĂƚŝĞŶƚƐ͛ ƚŚƌŽƵŐŚƉƵƚ ĨŽƌ 
treatment decreases the cost (i.e. 

extending review time delay from 

4-6 months to 1 year) and QALYs 

(i.e. additional delay lead to the 

deterioration of visual field). 

 The ICER changes of having to 

ĚĞůĂǇ ƚŚĞ ƉĂƚŝĞŶƚƐ͛ ƚŚƌŽƵghput for 

delivering health services 

(extending booking cycle and 

follow-up times). 

5 [23] Orthopaedic 

specialist, 

 Resources 

were 

indirectly 

Increasing or 

decreasing the 

maximum 

Throughput Fixed 

(maximum 

number of 

DSA 

(increasing or 

decreasing 

N/A MŽĚĞůůĞƌ͛Ɛ 
assumption, 

 As the maximum capacity of 

orthopaedic services increases, the 

number of patients receiving an 
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physiotherapists

. 

constrained 

 Limiting the 

number of 

patients per 

month 

considered 

as the 

constraint 

throughput of 

25, 50, 75, 100 

or 125 

patients 

receiving  

orthopaedic 

services (OSPC 

or TOMS) per 

month. 

 

 

patients 

accepted per 

month 

remains 

constant). 

ƉĂƚŝĞŶƚƐ͛ 
throughput). 

medical 

records. 

initial assessment also increases, 

unless the supply of resources 

exceeds the demand. 

 The cost increases in line with 

increasing maximum throughput. 

 The waiting time and ICERs 

changes when experimenting with 

ĚŝĨĨĞƌĞŶƚ ƉĂƚŝĞŶƚƐ͛ ƚŚƌŽƵŐŚƉƵƚ͘ 

6 [24] N/A 

 

 Resource 

was 

indirectly 

constrained 

 Limiting the 

number of 

patients per 

year 

considered 

as the 

constraint 

Limiting the 

capacity for 

angiograms, 

bypass graft 

and 

angioplasty 

per year, per 

million 

population 

(Cooper et al., 

2002:263). 

Throughput Fixed 

(maximum 

number of 

patients 

accepted per 

year remains 

constant). 

N/A Real-world 

comparison. 

Literature 

review. 

 Limiting throughput of patients for 

treatment decreases the measure 

of LYs (i.e. due to the increase of 

death rate, which relates to the 

occurrence, type and speed of 

treatment for MI). 

7 [26] Paediatric 

physicians, 

nurses, 

radiographic 

technicians, 

ultrasound 

machine. 

 

 All 4 

resources 

were 

constrained  

 Limiting the 

number of 

children/ 

patient per 

batch in the 

rural and 

urban areas 

per year 

 The 

availability of 

all four 

resources 

were varied. 

 Limiting the 

batch of 100 

patients in 

urban, and 

120 patients 

in rural areas 

per year. 

Capacity and 

throughput 

Fixed 

(staffing 

mixed 

between shifts 

and 

availability of 

machine, and 

the number of 

patients 

accepted per 

year remains 

constant). 

N/A Real-world 

comparison, 

face 

validation. 

MŽĚĞůůĞƌ͛Ɛ 
assumption. 

 Lower participation leads to an 

increase idle cost of the resources 

required for screening. 

 Adding an additional ultrasound 

machine decreases the waiting 

time, while increases the number 

of successful DDH detection.  

 The ICER indicated that applying 

the ultrasound screening in 

current infant health care would 

be dominant in the urban area if 

an additional ultrasound machine 

is added and the screening is 

organised either by physicians or 

nurses (scenario 3). 

8 [27] Surgeons,  Resource Limiting Throughput Fixed DSA Face MŽĚĞůůĞƌ͛Ɛ  The excess cost per case for 
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operating 

theatre, robotic 

equipment, 

laparoscopic 

equipment. 

was 

indirectly 

constrained 

 Limiting the 

number of 

surgical 

procedures 

performed 

per year 

considered 

as the 

constraint 

number 

procedures 

performed by 

50, 100, 150 

or 200 per 

year. 

(staffing 

mixed 

between shifts 

and 

availability of 

equipment 

remains 

constant). 

 

(increasing or 

decreasing 

surgical 

capacity). 

validation. assumption. robotic prostatectomy treatment 

can be reduced by maintaining a 

high throughput of 100-150 cases 

in each centre per year. 

 The ICER indicated robotic surgery 

being dominant in large centres 

that manage ш 200 cases per year. 

9 [28]  Fixed site: 

plasma and 

platelet 

separators 

 Mobile site: 

mobile blood 

collection unit. 

 Both sites: 

physicians, 

nurses, 

secretaries, 

WBC devices 

and beds. 

 All 7 

resources 

were 

constrained 

in the fixed 

site 

 5 out of 6 

resources 

were 

constrained 

in the mobile 

site 

(physicians, 

nurses, 

secretaries, 

WBC devices, 

beds) 

 Limiting the 

number of 

appointment 

considered 

as the 

constraint in 

the fixed site 

 The 

availability of 

physicians 

and nurses 

were varied 

in the fixed 

site but the 

other five 

resources 

were kept 

fixed. 

 The 

availability of 

physicians 

and 

secretaries 

were varied 

in the mobile 

site but the 

other three 

resources 

were kept 

fixed. 

Capacity and 

throughput 

Time variant 

(Fixed site: 

different 

appointment 

strategies; 

Both sites: 

different 

staffing mixed 

were 

configured 

using working 

shift). 

DSA (Fixed 

site - different 

appointment 

strategies; 

Both sites - 

increasing or 

decreasing 

availability of 

resources). 

Real-world 

comparison. 

MŽĚĞůůĞƌ͛Ɛ 
assumption. 

 The improvement in the service 

level of the fixed site depends not 

only on adequate planning of 

human resources, but also 

appointment strategies. This is for 

achieving a higher service level 

with fewer human resources and 

costs spend. 

 The probability of abandonment 

and waiting time decreases as the 

number of physicians were 

increased in the mobile site. 

10 [29] Orthopaedic 

specialist. 

 Resource 

was 

indirectly 

constrained 

 Limiting the 

N/A Throughput Time variant 

(patient 

throughput 

for 

assessment 

N/A N/A MŽĚĞůůĞƌ͛Ɛ 
assumption, 

medical 

records. 

 The constraint causes the 

outcomes for CEA to change. 

 The DQ model projected the 

highest ICER, when compared with 

models without it. 
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number of 

patients 

accessible 

for the initial 

orthopaedic 

assessment 

and surgery 

in the DQ 

model were 

considered 

as the 

constraint 

and surgery 

were 

dynamically 

generated). 

 

 Queuing time increases for DQ 

model, as the demand increases. 

*1
 Type of constraint: (1) Capacity: Limiting the number of resource providing service/intervention (e.g. only 3 doctors are supplied in vaccination service); (2) Throughput: Limiting the number of 

patient access for service/intervention due to the limited supply of resources (e.g. 20 patients are accessible for vaccination service per day due to the limited supply of resources provided). 
*2

 Nature of 

constraint: (1) Fixed: Available physical resources or patient throughput is fixed (e.g. 50 beds or fixed number of patients accepted for treatment per day); (2) Time variant: Available physical resources 

or patient throughput changes with time (e.g. 10 additional beds are added to the night shift, the number of blood pack used for blood transfusion decreases as it is being used through time or 

different number of patients accepted for treatment per day). 
*3

 Model performance evaluation technique: (1) Real-world comparison: comparing the simulated outcomes against the reality (e.g. 

historical and/or observed data); (2) Face validation: validate the outcomes with an expert; (3) Model calibration: adjusting the parameter value in order to minimize the difference between the 

simulated and reference data. Abbreviations: ANN, anaesthesiologist; OR, operating room; DSA: deterministic sensitivity analyses; SU: structural uncertainty; MPE: model performance evaluation; 

PC/d, patients cared for per day; ICER, incremental cost-effectiveness ratio; FTE, full-time equivalent; LYs, life-year saved; MI, myocardial infarction; WBC, whole blood collection. 
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The constraints identified from the reviewed articles can either be fixed over time (i.e. the availability of 

physical resources or patient throughput being fixed throughout the model run) or time variant (i.e. the 

availability of physical resources or patient throughput changes with time throughout the model run, 

e.g. shift patterns). 7 of the 10 studies [19-21, 23, 24, 26, 27] used fixed constraint, by having identical 

staffing mixes between shifts and/or constant availability of resources. Meanwhile, the remaining 3 

studies [22, 28, 29] assessed time variant constraints, by using different staffing mixes between shifts 

[28] and/or limiting service throughput to different number of patients accepted in different days of the 

week (e.g. using appointment scheduling [22]). 

 

The majority of the reviewed studies [19-21, 26-29] used simple capacity constraints. That is, these 

studies neglected the realistic details such as the effects of queuing or prioritising ƚƌĞĂƚŵĞŶƚ ďǇ ƉĂƚŝĞŶƚƐ͛ 
severity of illness. However, these issues were incorporated in the remaining studies by introducing 

impatient behaviours (balking and reneging) within the queues [23] or using priority queues [22, 24]. For 

example, the model developed by [22] reserved throughput capacity for urgent cases. As a result, low 

priority patients must wait until capacity is available to serve it (i.e. if other clinics are fully booked), 

which consequently effects the cost-effectiveness outcome. 

 

The sources of data constraints used for simulation based RM in HTA in the 10 articles varied. These 

ƐŽƵƌĐĞƐ ƌĂŶŐĞĚ ĨƌŽŵ ŵŽĚĞůůĞƌ͛Ɛ ĂƐƐƵŵƉƚŝŽŶ (e.g. expert opinion), primary data collection (i.e. patient 

logs, medical records), and secondary data (e.g. literature review). The most common was ŵŽĚĞůůĞƌ͛Ɛ 
assumption (n=9), followed by medical records (n=2) and patient logs (n=1). Only three models [22, 23, 

29] combined multiple sources of data constraints, while the remaining focused on a single source. It 

should also be noted that out of the 5 national level models, only 1 [24] used national constraint data 

(e.g. rates published by the British Cardiovascular Society). Meanwhile, the rest of the models [26-29] 

gathered constraint data at an organisation level (i.e. ŵŽĚĞůůĞƌ͛Ɛ ĂƐƐƵŵƉƚŝŽŶ and/or reviewing medical 

records) 

 

Uncertainty associated with the constraints was included in the modelling and analysis in 5 out of 10 

articles. These examined uncertainty in the parameters associated with the patients inter arrival time 

[19], full-time equivalent (FTE) staff members [20] and service throughputs by performing 

deterministic sensitivity analyses [23, 27], and 1 study examined in both the staffs and service 

throughputs [28]. The remaining studies examined stochastic uncertainty in the results using probability 

sensitivity analysis (PSA) by conducting multiple simulation runs varying all parameters including those 

relating to constraints [21, 22, 24, 26, 29]. 

 

7 of the 10 studies [19, 20, 22, 24, 26-28] mentioned the use of model performance evaluation to 

determine the validity of constraint outputs. Three techniques were identified. The most common 

technique was real-world comparison (n=5), followed by face validation (n=3) and model calibration 

(n=1).  2 of these 7 studies [19, 26] used mixed techniques; the remaining used individual technique. 

Furthermore, out of the 3 studies [21, 23, 29] that did not perform model performance evaluation, only 

one [23] mentioned the reason for not evaluating the constraint output (i.e. limited availability of data 

for real-world comparison). 
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All the studies concluded that incorporating the effects of constraints changes the RM and CEA 

outcomes. However, the effects of the constraints are varied. Within the results of the 10 articles 

included in this review: 9 studies [19-23, 26-29] found changes in costs; 9 studies [19-24, 26, 28, 29] 

found changes in effectiveness outcomes (e.g. QALYs,); 7 studies [20-23, 26, 27, 29] indicated changes in 

ICER; 3 studies [19, 20, 23] indicated ĐŚĂŶŐĞƐ ŝŶ ƉĂƚŝĞŶƚƐ͛ ƚŚƌŽƵŐŚƉƵƚ͖ ĂŶĚ 8 studies [19-23, 26, 28, 29] 

indicated changes in waiting time. Therefore, neglecting these constraints may lead to incorrect results. 

It should be noted that only one study [24] reported a single effect of constraint (i.e. changes in costs), 

with the remaining studies reported multiple effects.  

 

4. Discussion 

 

This paper set out to provide a comprehensive and systematic review of the studies that report on the 

use of DES for RM in HTA. RM in HTA is a relatively new topic [2]. So, this paper aims to provide an 

overview of its application as well as to suggest directions for further research. 

 

RM is useful in situations where the CEA results are affected by constraints (as assumed by the 

stakeholders e.g. doctors) and/or if the new technology is reliant on change of physical resources. There 

are several ways in which these situations can manifest themselves and these have been highlighted 

using examples from reviewed articles as follows: 

 Need for additional new resources when using a new technology [19, 20, 26]. 

 Need for specialised resources when administering the new technology [19, 20, 22, 23, 26-29]. 

 Having a very limited supply of resources when administering the new technology [19-24, 26-

29]. 

 Having effect on the existing queues/waiting list when administering the new technology [21, 

24]. 

 

The potential impact of constraints can be categorised into two types ʹ process impacts and health 

impacts. Incorporating constraints will always result in process impacts i.e. delays, waiting lists, etc. 

However, these process impacts may also manifest as health impacts ʹ e.g. if delay to certain 

treatments affects the rate of recovery and mortality, as in the case of thrombolysis [31]. It should be 

noted that an individual constraint can have more than one type of impact. Out of the 10 articles 

identified, the majority (n=7) focus on the process impacts such as the effect of delays on the service 

flow and associated costs while only three studies incorporated the possible effect on a ƉĂƚŝĞŶƚ͛Ɛ health 

owing to treatment delay [21, 22, 24]. These studies focus on coronary heart disease (increasing rate of 

angina symptoms with treatment delay; mortality correlated to the speed of treatment) and glaucoma 

(increasing rate of deterioration of the visual field with treatment delay). If service delay were a serious 

concern for a given condition [32, 33], neglecting the effect of constraints in the model may lead to 

changes in health outcomes (e.g. QALYs, LYs), and hence wrong cost-effectiveness results [21]. 

 

The usefulness of any model depends on the accuracy and validity of the outputs. It is obvious that the 

quality of data used to model the constraints has a direct impact on the quality of the model results and 
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neglecting the quality of constraint data may lead to misleading results and conclusions in HTA. 

However, as observed in the studies included in the review most of the data on the constraints was 

based on opinion and assumption. This is typical of these types of studies given the constraints are 

context/setting specific making it difficult to use the data from published literature. However, the model 

outputs can be validated (with real world data, where available) in order to ensure the validity of the 

assumptions/opinions. Model performance evaluation was conducted by validating the results of the 

model [19, 20, 24, 26, 28] or calibrating [22] the effects of uncertainty explicitly to the data observed in 

real-world. If there is no real world data available, face validation can be performed with experts to 

ensure that the results are sensible, as reported in some of the studies [19, 26, 27]. However, face 

validity is subjective and should be treated with caution. Data can also be collected to inform the model 

and/or to validate the results of the model [19, 20, 24, 28]. 

 

Precise data are rarely available and there is need to account for the effects of uncertainty on the 

constraints. Sensitivity analysis can help to quantify this uncertainty. Five studies [19, 20, 23, 27, 28] 

incorporated uncertainty in the parameters (input values, e.g. availability of resources, throughputs) 

relating to the constraints, using deterministic sensitivity analysis. For example, a systematic analysis 

was conducted in one of the studies to explore the effects on the costs, QALYs and ICERs for different 

patient throughputs of having surgical constraints [27]. Meanwhile, the remaining studies [21, 22, 24, 

26, 29] quantify uncertainty in the results using PSA by running multiple simulation runs, varying all 

relevant parameters including those relating to constraints, in order to produce better estimate of 

mean. For example, one study used 1000 simulation runs to generate stable ICER estimates [29]. Given 

the exact values (parameters) are unknown and that the inclusion of constraints impacts the results, an 

exploration of the uncertainty around them should also be undertaken. There are existing reviews and 

guidelines for modelling uncertainty in HTA that can be referred to for more information [34-38].  

 

An aspect observed in all the studies using DES based RM, as opposed to a standard HTA model relates 

to the model time frame [39]. Long-term modelling is needed for estimating the cost-effectiveness, in 

order to capture all relevant outcomes [40] while the need to understand short-term fluctuations in the 

resource capacity needs the model to produce outputs in the short-term (e.g. a few months). It should 

be noted that the short-term resource capacity can only be captured in models that explicitly model the 

constraints.  

 

TŚĞ ŵŽĚĞůƐ ƚŚĂƚ ĂƌĞ ďĂƐĞĚ ŽŶ ͚ůŝŵŝƚĞĚ ƚŚƌŽƵŐŚƉƵƚ͛ ĐĂŶ ŽŶůǇ ƉƌŽǀŝĚĞ ƚŚĞ ůŽŶŐ-term results as they cannot 

capture the short-term resource issues. When performing resource modelling, thus, if there is a need to 

model both the short-term process related outcomes as well as the long-term health (and cost) 

outcomes, the models need to explicitly incorporate the resource constraints in order to accurately 

estimate the cost-effectiveness as well as the resource issues. 4 of the 10 studies in our review used 

such approach and combined both of these outcomes in models with capacity constraints [19, 20, 26, 

28]. For example, the model developed by Ramwadhdoebe [26] calculated the short-term cost for 

waiting per day of having limited resources (e.g. paediatric physicians). This process is replicated until 

the end of the 5 year simulation period to estimate the long-term outcomes, hence providing a better 

representation of the health service and cost-effectiveness outcomes. However, the remaining studies 
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that examined throughput constraints [21, 22, 23, 24, 27, 29] focused mainly on long-term process 

outcomes. These studies are not able to capture the short-term process delays as a result of micro-level 

interactions (of individual patients competing for scarce resources). 

The studies that considered throughput constraints only implicitly addressed the constraints [21-24, 27, 

29]. These studies do not model the resource usage (e.g. working patterns, utilisation) or the effects of 

delays in individual processes (e.g. queues, waiting lists), but rather combine everything into a 

composite measure (limited patient throughput) and use it as a proxy for resource constraints. There are 

drawbacks to this approach. Firstly, ƵƐŝŶŐ Ă ƉƌŽǆǇ ͚throughput͛ does not give the whole picture, and may 

produce different results compared to an explicit constrained model. Secondly, these analyses provide 

less flexibility for allowing a wider range of experiments (on physical resources) to be carried out. 

Thirdly, these analyses do not capture the full effects of queuing due to resource constraints. Effects of 

queuing such as balking (refusing to join the queue) or reneging (leaving the queue after entering) 

ĐĂŶŶŽƚ ďĞ ĞǆƉůŝĐŝƚůǇ ĐŽŶƐŝĚĞƌĞĚ ŝŶ ƚŚĞ ͚ůŝŵŝƚĞĚ ƚŚƌŽƵŐŚƉƵƚ͛ ŵŽĚĞls. If any of these issues are important, 

then a fully constrained DES model is required to accurately determine cost-effectiveness in models; 

ƵƐŝŶŐ Ă ͚ƚŚƌŽƵŐŚƉƵƚ͛ ŵŽĚĞů ǁŝůů ŶŽƚ ĐĂƉƚƵƌĞ ƚŚĞ ĨƵůů ĞĨĨĞĐƚ ŽĨ ĐŽŶƐƚƌĂŝŶƚƐ. Whilst the throughput can be 

varied to proxy short-term constraints (e.g. different number of patients accepted per day [22]), it does 

not provide the same level of detail as modelling the constraints explicitly. It should be noted that DES 

modelling is not a prerequisite for capturing the effect of constraints via throughput measures - ͚ƐŝŵƉůĞƌ͛ 
approaches that predominate in HTA such as cohort-based state transition models (such as Markov 

models) and decision tree models can be used for estimating overall resource requirements. Two such 

studies reported the use of Markov modelling to estimate the resources required in order to estimate 

the feasibility of the respective programmes [41, 42].  

 

In reviewing the literature, it is clear that explicit modelling of the constraints (using capacity constraint) 

leads to a more realistic forecast and offers a superior forecasting capability for DES based RM, when 

compared to modelling throughput constraints. However, the choice of approach depends on the model 

aim. For example, using throughput constraint may well be adequate in some situations to produce a 

generalisable conclusion. Also, as observed in one study [21], whilst applying RM for HTA provides a 

better representation of reality (real-world capacity restrictions), this may increase the modelling and 

running time of the model. The value of complex DES modelling should be assessed within the context 

of the decision-making process and the extent to which the constraints could affect the cost-

effectiveness as identified within the project scoping (e.g. discussion with the stakeholders). This review 

has focused only on DES. However, it is believed that there could be other techniques that can be used 

for RM in HTA such as system dynamics (SD) or agent based modelling (ABM) [43] or cohort modelling 

(Markov models or decision trees) [44]. 

  

The use of resource modelling also has links to the concept of value of implementation analysis. The 

expected value of implementation (EVImp) is the net monetary benefit associated with increasing the 

uptake of a cost-effective technology [45].  EVImp provides a starting point for further research that 

looks at whether it is cost-effective to invest in ways of speeding up the uptake of cost-effective 

technology.  Only a small number of studies have estimated EVImp [46-47] and these have been based 

on changes in overall uptake (i.e. implicitly modelling the constraints have limited uptake).  Resource 
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modelling, could provide another way of looking at EVImp by directly modelling the additional costs 

required to loosen a constraint on throughput and assessing whether the revised ICER still falls below 

the funding threshold. 

 

Other than the few studies that were identified in our review [19, 20, 26, 28], most HTA studies do not 

address the effects of constraints explicitly when developing a patient-level model [15]. The reviewed 

studies showed that DES is an effective tool to assess the effects of constraints, but given the small 

number of studies found in our review, there is a gap in understanding on how DES can be used for 

considering explicit constraints when performing RM in HTA. On the other hand, resource modelling is a 

common feature in traditional operational research (OR) studies. A recent umbrella review [11] 

identified twelve systematic reviews on the application of DES models in health care, with majority of 

the studies included in these reviews relating to capacity planning. Whilst these OR studies model the 

process efficiency (i.e. effect of resource constraints on process outcomes such as waiting times, 

queues, etc.) in detail, the health outcomes are not captured at all. This is in contrast with that of HTA, 

where the long-term outcomes are modelled in detail but the resource constraints are ignored. There is 

a need to consolidate the practices from both OR and HTA fields in order to establish good practice 

when estimating long-term outcomes taking resource constraints into account. 

 

5. Conclusion 

 

In this paper, a systematic review of articles on simulation based RM in HTA, using discrete event 

simulation models is reported. The studies showed that DES proved to be an effective technique for RM 

in HTA and the constraints can be important and can affect the cost-effectiveness results. However, the 

field is still in its infancy with issues still surrounding which modelling technique to use, how exactly to 

incorporate resource constraints and their effects on the system, what data sources should be used to 

use model resource constraints, how to incorporate uncertainty in these resource models, and how to 

validate the outputs from these models.  Further research should be undertaken to examine the 

possible developments for detailed modelling of the resource constraints in HTA in order that more 

robust and valuable outputs from such analyses are produced. 
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