
This is a repository copy of Pathological and Test Cases For Reeb Analysis.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/144396/

Version: Accepted Version

Book Section:

Carr, H orcid.org/0000-0001-6739-0283, Tierny, J and Weber, GH (2020) Pathological and
Test Cases For Reeb Analysis. In: Topological Methods in Data Analysis and Visualization
V. Mathematics and Visualization book series . Springer , pp. 103-120. ISBN 978-3-030-
43035-1

https://doi.org/10.1007/978-3-030-43036-8_7

© Springer Nature Switzerland AG 2020. This is an author accepted version of a chapter
published in Carr H., Fujishiro I., Sadlo F., Takahashi S. (eds) Topological Methods in Data
Analysis and Visualization V. TopoInVis 2017. Mathematics and Visualization. Springer,
Cham. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

See Attached

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Pathological and Test Cases For Reeb Analysis

Hamish Carr and Julien Tierny and Gunther H. Weber

Abstract After two decades of computational topology, it is clearly a computation-

ally challenging area. Not only do we have the usual algorithmic and programming

difficulties with establishing correctness, we also have a class of problems that are

mathematically complex and notationally fragile. Effective development and de-

ployment therefore requires an additional step - construction or selection of suitable

test cases. Since we cannot test all possible inputs, our selection of test cases ex-

presses our understanding of the task and of the problems involved. Moreover, the

scale of the data sets we work with is such that, no matter how unlikely the be-

haviour mathematically, it is nearly guaranteed to occur at scale in every run. The

test cases we choose are therefore tightly coupled with mathematically pathological

cases, and need to be developed using the skills expressed most obviously in con-

structing mathematical counter-examples. This paper is therefore a first attempt at

reporting, classifying and analyzing test cases previously used for algorithmic work

in Reeb analysis (contour trees and Reeb graphs), and the expression of a philosophy

of how to test topological code.

Hamish Carr

School of Computing, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK e-mail:

h.carr@leeds.ac.uk

Julien Tierny

Sorbonne Universities, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, France e-mail:

julien.tierny@lib6.fr

Gunther H. Weber

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA e-mail:

ghweber@lbnl.gov & University of California at Davis, One Shields Avenue, Davis, CA 95616,

USA e-mail: ghweber@ucdavis.edu

1

2 Hamish Carr and Julien Tierny and Gunther H. Weber

1 Introduction

Computational topology began in the 1980s for scalar fields [14] in geographic in-

formation systems, and for vector fields [15] for scientific visualization, with scalar

field analysis then developing for the analysis of 3D (volumetric) data.

Over time, topological analysis in scientific visualization has included techniques

based on Reeb Analysis, Morse-Smale Analysis, Persistent Homology, Vector Field

Analysis, and Tensor Field Analysis. While articles commonly describe new algo-

rithms, they rarely describe testing strategies, although tools exist that could be ap-

plied, particularly for vector fields [21, 26]. We will, however, restrict our attention

to Reeb Analysis, where we have prior experience. Similarly, while the strategies

for debugging visualization described by Laramee [18] can be applied, we focus

primarily on the test cases we use for topological algorithms.

While these techniques are powerful for understanding data, they are conceptu-

ally complex, but also particularly difficult to implement, as they are susceptible to

a wide range of errors during program construction. Thus, in addition to the nor-

mal struggle to frame an algorithm accurately, robustly and efficiently, we have to

contend with problems due to the difficulty of the underlying mathematics.

Between us, we have accumulated over forty years of experience in working with

topological code. As a result, we have developed and employed a variety of strate-

gies for constructing, testing and debugging programs. These strategies, however,

rarely form part of publications, since there is usually barely room for all the tech-

nical details. Since these strategies are of value to other researchers or programmers

attempting to grapple with complex algorithms, we therefore aim to start the discus-

sion of test cases and testing strategies.

We do not have space for the details of all the algorithmic work, so we start

with a quick overview instead in Section 2. We then sketch a number of conceptual

approaches to test cases in Section 3 and introduce two types of pathological cases,

flat regions in Section 4 and the W-structure in Section 5. Section 6 then gives some

concrete examples of test sets that we have used, and Section 7 discusses some of

the techniques that we use for visualizing intermediate results during debugging.

Then Section 8 summarizes our experience and presents some conclusions.

2 Reeb Analysis

Reeb Analysis studies the relationships between isocontours to extract knowledge

from a mathematical function or data set. Consider a scalar field, i.e. a function

of the form f : Rd → R. Since the data we wish to analyze is normally spatial in

nature, we shall assume d ∈ {2,3,4}. A level set or inverse image of f is defined by

choosing an isovalue h ∈ R, then extracting all points in the domain of the function

with function value h, i.e. f−1(h) = {x ∈ Rd : f (x) = h ∈ R}. These level sets are

often referred to as isocontours (isolines where d = 2, isosurfaces where d = 3).

Pathological and Test Cases For Reeb Analysis 3

Any given isocontour may have multiple connected components, which are am-

biguously referred to as isolines and isosurfaces. We therefore use isocontour com-

ponents to refer to the individual surfaces, in line with the literature.

If we contract each isocontour component to a single point, we construct the

contour tree [3]. For more general functions, where the domain is a general manifold

M , the same construction gives the Reeb graph [19]. Although a special case of the

Reeb graph, the contour tree is easier to compute [6], and the fastest Reeb graph

algorithm reduces the input to a simple domain, computes the contour tree over that

domain, then reconnects the domain (and the tree) to build the Reeb graph [24].

More recently, Reeb Analysis has been extended to functions of the form f :

M → Rr, where r > 1. These cases are covered by the mathematics of fiber topol-

ogy, and we replace isocontours with fibers representing inverse images of the form

f−1(h) = {x ∈ Rd : f (x) = h ∈ Rr}. Continuous contraction of these fibers then

results in the Reeb space [11]. This can be constructed approximately [4] for the

general case, or precisely [22] for the case f : R3 → R2.

Rather than recapitulate all of these algorithms, we refer the reader to the original

papers, and assume some degree of familiarity with the details, as we are presently

interested in describing debugging practice and test cases for them.

3 Approaches

Generally speaking, debugging complex code depends on testing representative

types of data, since exhaustive testing of all possible inputs is combinatorially im-

possible. Within this, test sets may be analytic, stochastic, empirical, or synthetic,

but the choice normally depends on the specific problem domain.

Analytic: Frequently, computation replicates an existing mathematical method,

and as a result, test cases can be constructed from known mathematical examples,

which were generally developed during mathematical debugging of an idea. Since

these are likely to display interesting or challenging behaviour, they are commonly

used as test functions for which the ground truth result is already well understood.

For our work in computational topology, this ideal approach has been less use-

ful than it might seem. This occurs because mathematical development generally

considers smooth infinitely differentiable functions. Since most code assumes sim-

plicial or cubic meshes with linear, trilinear or ad hoc interpolation, the sampled

data rarely captures the original mathematical function exactly unless sampled at

high resolution. This is of particular concern when debugging, as manual validation

of intermediate stages for anything over 103 is time-consuming and wearisome.

Moreover, mathematical reasoning is reductive, and attempts to deal with a small

number of simple cases, in order to stay within the reasoning abilities of a human

being. As a result, analytic examples tend to have simple topology – i.e. relatively

small numbers of topological events. However, the sampling necessary to capture

this causes them to be medium scale in terms of data, which makes them unattractive

for early stage testing. Later on, simple topology has typically already been tested,

4 Hamish Carr and Julien Tierny and Gunther H. Weber

and medium scale examples are used to test combinations of simple topology. At

this point, analytic functions are rarely complex enough to provide good medium

scale tests. We therefore tend to avoid analytic functions except at the conceptual

stage.

Stochastic: A second approach is to generate data sets stochastically - i.e. to

choose randomly from all possible data sets. While this has the merit that it does not

prefer any particular data sets, it fails to guarantee that challenging topology will be

tested early, or indeed ever. As a result, we tend to avoid stochastic approaches.

Curiously, however, as the data scales up, stochastic effects mean that every

pathological mathematical case will occur multiple times, leading to the problem

that we refer to as too much topology. In practice, 1 gigabyte of data means that

there may be tens of millions of topological events. If the isovalues at which they oc-

cur are independent, then even for double precision floating point, it is highly likely

that multiple topological events will happen at the same isovalue, which means that

robust handling of complex topology is always required. This has also driven much

of the work on topological simplification, so paradoxically, while avoiding stochas-

tic approaches in the abstract, we rely heavily on them in practice.

Empirical: Since the goal of computation is to process data, the third approach

therefore looks to existing data, either from prior experience or from a current data

problem. While it is generally simple to obtain data from a variety of sources, there

are at least four problems with empirical data:

1. Scale: as with mathematical test data, empirical data is often at too large a scale

to be useful in the early stages of development, although we commonly use em-

pirical data for testing at the medium to large scale.

2. Noise: many acquired data sets, particularly medical data, are noisy due to the

original acquisition process, and this tends to result in large numbers of topo-

logical events, which are undesireable for small scale testing. Noisy data types

therefore tend to be of more use at the medium to large scale.

3. Blandness: clean empirical data can suffer the opposite problem: that the number

of topological events is much smaller than the data set, again hampering manual

validation. Clean simulation data is particularly prone to this.

4. Clumping: some types of empirical data, such as medical, tend to have heavily

clumped values, as for example where isovalues correspond to different tissue

types. This tends to result in many topological events over a narrow range of

values, again hampering manual validation.

Having said that, empirical data becomes particularly useful at medium to large

scales, since many data types naturally result in large numbers of topological events,

providing a useful test of the scalability of the underlying approach. Moreover, we

have found that terrain data, which is self-similar at different scales, is often useful

for debugging, as discussed below.

Synthetic: Since neither analytic nor empirical approaches give good test sets

for early stages, we find that early stage testing relies heavily on synthetic examples

for algorithm development and debugging. We aim to keep input sizes small, and to

exhibit a rich topological behaviour. We depend in particular on pathological cases

Pathological and Test Cases For Reeb Analysis 5

and counter-example construction. Scalable examples are then built algorithmically

for data construction, by copying a known pathology, by working backwards from

the desired output structure, or by replicating copies of smaller-scale features.

Although mathematical functions would seem to be the best strategy, these are

most commonly C∞, and are a poor fit to the demands of algorithmic development.

We therefore tend to start with small sytnhetic examples, then scale by judicious

selection of empirical data, usually starting either with small terrain examples or

clean simulation data, and progressing to large complex data sets.

As we have noted, we tend to rely on experience with previous problems to

choose data sets that have previously caused algorithmic, theoretical or interpre-

tational difficulties. While not exclusive, there are two major types of data which

we know routinely present these difficulties even at small to medium scales: flat

regions and W-structures.

4 Flat Regions

Morse Theory assumes that critical points occur at unique values, and that there are

no flat regions—i.e. regions with gradient of 0 but dimensionality > 0. While this

considerably simplifies the mathematics, it tends to have the reverse effect in practi-

cal data. And, although perturbation through simulation of simplicity [12] allows us

to reduce the problem to the mathematically tractable, it imposes both algorithmic

and interpretational costs.

Fig. 1 Flat region in the hydrogen data set that is likely a quantization artifact and should be

removed by simulation of simplicity. In the non-quantization version the hole would likely be

filled in continuously until it disappears around a critical point.

To make matters worse, flat regions are frequently observed in quantized data

sets. Many types of data have a narrow range of interesting values, with multiple

topological events clustering tightly together. Even a small amount of quantization

tends to result in flat regions. Moreover, for algorithmic purposes, flat regions are

often broken up by symbolic perturbation [12], which adds a different mathematical

6 Hamish Carr and Julien Tierny and Gunther H. Weber

Fig. 2 Flat region in the hydrogen data set that is likely corresponding to a feature of interest

and should be characterized in its entirety. The ring-structure likely has a correspondence in the

smooth, real-valued function (but sampling on a grid without quantization would break it apart).

ε to each value to guarantee unique values throughout the data. This induces addi-

tional ε-persistent edges, which must then be suppressed in user interfaces and/or

accounted for through simplification.

The converse of this is that these data sets are often valuable test cases of whether

symbolic perturbation is implemented correctly and consistently. A good example

of this occurs in the “nucleon” data set from VolVis. It contains small to moderately

sized regions of constant value that can be resolved using symbolic perturbation.

Equally, the hydrogen data set [20] has extremely large constant regions that

stress test symbolic perturbation implementations. For instance, most of the region

around the hydrogen atom has a constant value, as shown in Figure 1. Here, the flat

region is likely spurious and should be removed by symbolic perturbation. In the

quantized data, a whole “cap” like structure forms around a flat region and subse-

quently closes an isosurface component. In this case, symbolic perturbation leads to

the “correct” behavior: the component closes off smoothly.

However, not all flat regions are unimportant or spurious: they can be the re-

gions of most interest in the data. Again considering the hydrogen data set, Figure 2

shows a flat region of particular interest where two protons interact. Here, even a

continuous function would likely contain a region of constant value, i.e. the cir-

cle around which the ring forms. Since this behaviour is intrinsic to the underlying

phenomenon, suppressing the region to ensure mathematically clean behaviour may

actually mislead interpretation of results.

Ideally, we would be able to distinguish between “spurious” and real features,

and to define stability for them in a mathematically sound framework. This may

involve consideration of the difference between persistent simplification and geo-

metric simplification [8], but is broadly speaking beyond the scope of the current

discussion.

Phenomena like these have also led to approaches that aim at avoiding symbolic

perturbation and identify critical regions directly [10, 25, 1, 17]. For example, in

the hydrogen atom, the “ring structure” shown in Figure 2 appears around a region

of constant function value. Symbolic perturbation breaks the ring up into at least

a maximum (around which the ring starts to form in the perturbed version) and a

saddle (where the ring closes in the perturbed version). One may argue that in this

Pathological and Test Cases For Reeb Analysis 7

instance it is desirable to detect the entire ring structure as a critical entity, i.e. a

circle around which the ring forms.

5 W Structures

While flat regions test out ability to reconcile quantized data with mathematical

formalisms, our other pathological case, the W structure can be constructed either

mathematically or by observation in data.

Step I: Alternating
Ridges (+) & Valleys (-)

Step II: Insertion of
Up (v) & Down (^)

Saddle Points

Step III: Assign
Values

-

-

-

-

-

-

-

-

+

+

+

+

+

+

+

+

-

-

^

-

-

^

-

-

+

v

+

+

+

+

v

+

0

1

7

2 5

6

3

4

16

9

14

17 18

11

10

15

Step IV: W-Structure
in Contour Tree

+

+

+

+

+

+

v

+

0

1

7

2

5

6

3

4

16

9

14

17

11

18

10

15

13

19

8

12

12

8

13

19

Fig. 3 An example of a “W structure” in a contour tree, with construction.

This structure was first shown as an illustration of a potential case by Carr et al. [7]

(as Figure 2). However, the implications of this structure were not fleshed out, and

the illustration was omitted from the later journal paper [8] for reasons of space.

Since then, it has caused difficulties both in proofs [2], and in algorithmic analysis

of recent parallel approaches [9].

We refer to this as a W structure since it consists of a horizontal zigzag of edges

(or paths) in the contour tree. In 2D, these can be constructed as a sequence of nested

8 Hamish Carr and Julien Tierny and Gunther H. Weber

volcanic caldera. Similarly, in 3D, nested shells alternating between minima and

maxima will also display this behaviour. However, once boundary conditions are

taken into account, an alternating sequence of ridges and valleys stretching across

the data set will also result in a W structure.

Once we realize the impact of boundary conditions, it is easy to construct W

structures with any desired complexity, as illustrated in Figure 3. Here, we start

with alternating ridges and valleys. Next, we insert saddle points in each ridge and

valley to divide them into multiple extrema each. Finally, we assign values to each

location, making sure we stay consistent with the assignment of saddle points. As

a result, we see a horizontal zigzag emerge in the contour tree, and is clear that we

can use this construction to make arbitrarily complex W structures.

We note that there are many variations possible. For example, we have chosen

to make all downwards saddles lower than all upwards saddles. While this is not

necessary, it is easy to enforce. Similarly, the exact ordering along the ridges and

valleys can be altered: in larger examples, we can have multiple extrema for each.

We have also chosen to place the saddles in the middle - there are boundary effects

when they are at the edge of the data. Moreover, in practice we tend to use diagonal

ridges and valleys, in order to pack more features into a small space. But the basic

strategy is clear: alternate ridges and valleys generate W-structures, and this gives

us useful test cases at any desired scale.

6 Concrete Examples

In addition to the specific examples of flat regions and W structures, we have histor-

ically used a range of data sets for testing. While the following list is not exhaustive,

it covers a range of data sets we have found useful in practice for test purposes.

The 5b Dataset: This dataset was built around 2000 for testing contour tree

construction. The intent was to pack the maximum number of topological features

into the smallest possible space. As a result, it has shown up in a number of papers.

It was constructed by electing to have two minima, one interior and one exterior,

and four maxima arranged in pairs with toroidal isosurfaces nested around them.

Initially, this data set was constructed as a 3× 3× 3 grid, but was embedded in a

layer of 0s - as a result, it is a 5×5×5 grid, as shown in Figure 4.

Volvis Data: We also use the volvis data repository for testing, in particular the

fuel dataset, which has around 100 critical points in a 64×64×64 data set, although

with more maxima than minima. The hydrogen dataset has also proved useful, as

several of the features of interest form flat regions in the data, which is a useful test

of the simulation of simplicity used to guarantee topological properties.

Protein Data Base: Another source of test data is the PDB protein data base

(www.wwpdb.org). One of the utilities from this project generates sampled electro-

static potential fields at any desired resolution, and these tend to have many topo-

logical events occurring at bonds between atoms. One dataset from this source was

Pathological and Test Cases For Reeb Analysis 9

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

99

95

85

0

85

95

99

0

90

80

95

0

0

0

0

0

0

0

0

0

75

55

60

0

65

45

70

0

50

15

40

0

0

0

0

0

0

0

0

0

97

92

82

0

82

92

97

0

87

77

87

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 00 000 00 00 0 00 00 0 00 00 0 00 00

Colours:
Branch Decomposition
(Hierarchy of Features)

Hierarchy Induced by
Persistence

(isovalue range)

Plane z=0 Plane z=1 Plane z=2 Plane z=3 Plane z=4

Fig. 4 5b: a synthetic 5×5×5 dataset, constructed to have 4 maxima, 2 minima, 3 connectivity-

critical points and 5 additional Morse critical points in the central 3×3×3 block.

therefore instrumental in trapping a typographical error in a lookup table that caused

the same surface to be extracted over a hundred times instead of once.

GTOPO30 Data: We have found that terrain data to be valuable for testing

for several reasons. First, terrain data is defined in two dimensions, not three, and

therefore tends to be more useful for small scale testing. Secondly, it is naturally

self-similar, so interesting topology occurs throughout much of the world. Thirdly,

thanks to US government policy, it is freely available from the US Geographical Sur-

vey, in particular the 30 arc-second GTOPO30 dataset (lta.cr.usgs.gov/GTOPO30).

We have found that a small section of terrain around Vancouver captures 40 odd

topological events in about 400 data values, which is still feasible to verify man-

ually. For scaling studies, sections of the Canadian Rockies proved exceptionally

useful: they naturally give rise to W structures due to the parallel nature of moun-

tain ranges. Finally, a section of low-relief terrain from the Canadian Shield tests

both the handling of W structures and of clumped data values. This is not to say that

these are ideal choices: merely that they have been good tests in the past.

Nasty W During the development of the most recent contour tree algorithm, W

structures caused particular problems, and we therefore a number of small examples,

which led us to the construction described above. These were crucial in constructing

valid parallel algorithms, and had the side effect of developing our understanding of

this pathological case. Eventually, we constructed an extreme case to track down a

particularly nasty bug, simplifying the construction to a single triangle strip for ease

of manual debugging. We show a developed version of this, called the “nasty W” in

Figure 5, in which every vertex of the mesh is a supernode in the contour tree.

10 Hamish Carr and Julien Tierny and Gunther H. Weber

One of the particular values of this example is that the W structure ensures that

only two branches are candidates at any given time, with the lower priority one

chosen for removal. Here, our priority measure is the “height” of the branch, which

is not in fact the persistence of the extremum [16]. The right-hand most superarc

(200− 60) in the illustration has a priority of 140, higher than the priority (110)

left-hand superarc (230− 120). The left-hand superarc is therefore removed first,

revealing a new superarc (0− 130) with priority 130: note that at all stages, the

right-hand superarc has the higher priority, so is never removed, and becomes part

of the master branch of the decomposition.

The Nasty W has several interesting properties. First, the master branch includes

neither the global minimum nor the global maximum. Second, the global mini-

mum and global maximum do not pair with each other, indirectly demonstrating

that branch decomposition and contour tree simplification are not equivalent to per-

sistence. And third, the master branch isn’t even the longest monotone path in the

tree! As a result, this (and several other W structures) are now part of our standard

test suite for working on contour tree algorithms.

One Cube and One Cube Forking While less work has been done on Reeb

spaces than on contour trees and Reeb graphs, the same pattern of test case construc-

tion was visible. Real data sets were too complex, while the existing mathematical

examples were difficult to construct in practical data. As a result, we constructed

three small examples of volumetric bivariate meshes, all employing 6 tetrahedra

packed into a single cube with a shared major diagonal (i.e. a Freudenthal subdivi-

sion).

Here, the goal was not to maximize the complexity (at least for our first example),

but rather to develop a small example with non-trivial Reeb space in order to assist

in our own understanding of fiber topology. After several years of limited progress

based on combinations of polynomial functions, this example was developed with

a small test harness and immediately led to fiber surfaces, then played a role in

algorithm development for Reeb spaces CGT15. It is therefore recommended both

as a first tiny data set for testing correctness, but also as an example for the process

of learning and reasoning about Reeb spaces and fiber topology.

This example followed a standard approach in fiber topology, by using a linear

ramp for one of the functions, and choosing the first so that the contour tree on one

face is an upwards fork, while the contour tree on the opposite face is a downwards

fork. In its earliest incarnation in 2002, it was used by the first author to reason

about time-varying contour trees. It then became an example used to explain Reeb

Spaces to students: when the time came to construct a small data set for Reeb Space

computation, it was natural to embody it as a small tetrahedral mesh.

Due to the tetrahedralization chosen, the result is slightly different. However, the

downward fork is recognizable as two flaps (the white regions on the left), while

the upward fork became another two (the white regions on the right). In the middle

gray region, only one fiber exists, represented by gluing the two partial Reeb spaces

together. We constructed paper models of this (and our other examples), and it was

these models that led us to construct fiber surfaces [5].

Pathological and Test Cases For Reeb Analysis 11

80

170

180

190

230

250

20

60

0

120

40

80

90

160

130

70

110

140

150

120

Branch: Vertices: Priority Blocking Edge

I 80 ➔ 60 20 230 ➔ 120 (110)

II 230 ➔ 120 110 20 ➔ 160 (140)

III 0 ➔ 130 130 20 ➔ 160 (140)

IV 190 ➔ 110 80 20 ➔ 160 (140)

V 90 ➔ 140 50 20 ➔ 160 (140)

VI 250 ➔ 120 130 20 ➔ 160 (140)

VII 80 ➔ 150 70 20 ➔ 160 (140)

VIII 170 ➔ 70 130 40 ➔ 160 (140)

IX 180 ➔ 20 160 None - Master Branch

230

III

II

I

IV

V

VI

VII

VIII

IX
X

Superarc:

Branch, with pruning order:
IV

230

0

120 130

190 90

110

250

140 120 150 70 160 60

80 170 40 180 20 80

Triangulation:

Contour Tree & Branch Decomposition:

Fig. 5 The Nasty W test example. The contour tree was constructed first, then the saddles arranged

along one row of the mesh, the extrema along the other row.

We then constructed the second example, in Figure 7, by replacing the linear

ramp with a rotated copy of the first function. Here there are up to three fiber com-

ponents for any given value. Moreover, two “vertices” of the central square are not

vertices of the mesh, but intersections of the projections of the mesh edges. This

property showed us that certain algorithmic lines of attack would be unfruitful.

Finally, since all of the fibers in these examples were open at the boundary, we

constructed a third to have closed loop fibers around the main diagonal of the cube.

This was less useful than we had hoped, but still helped us to think about vertices

and tetrahedra that overlapped in projection. We therefore omit this example.

These examples are small enough to print out and assemble manually, and we

have found them very useful for comprehension and for debugging.

12 Hamish Carr and Julien Tierny and Gunther H. Weber

v3

v1

v2

v2

GLUE
REAR

v7v5 v6

GLUE
REAR

v1

v0

GLUE
FRONT

v4v5
v6

GLUE
FRONT

ONE CUBE:
This started c. 2002 to represent a
time-varying contour tree that
started as a downward fork at t=0
(the left end) and morphed to an
upward fork at t=1.

As a Reeb Space, a second function
was defined as a linear ramp
over time. The pair of functions was
then embodied as six tetrahedra
packed into a single cube of data

Time-VaryingTree Reeb Space

Vertex Position Values
v0 (0,0,0) 0, 0
v1 (0,0,1) 4, 1
v2 (0,1,0) 6, 0
v3 (0,1,1) 0, 0
v4 (1,0,0) 10, 10
v5 (1,0,1) 4, 10
v6 (1,1,0) 6, 9
v7 (1,1,1) 10, 10

Tetrahedra:
v0 v1 v2 v5
v0 v2 v4 v5
v2 v4 v5 v6
v2 v5 v6 v7
v2 v3 v5 v7
v1 v2 v3 v5

Fig. 6 A small Reeb space constructed from six tetrahedra packed into a single cube in the domain

with shared edge v2v5.

Pathological and Test Cases For Reeb Analysis 13

GLUE
REAR
Face 251

Cell 4
(2573)

v0

v1

Cell 0
(2510)

v2

v4
v5
Cell 1
(2504)

GLUE REAR
Face 254

v4

v6

v2

Cell 2
(2546)

GLUE FRONT
Face 245

GLUE
REAR
Face 256

v7

v5

v6
v2

Cell 3
(2567)

GLUE FRONT
Face 256

v3

GLUE
FRONT
Face 253

v1

v3

v5

Cell 5
(1256)

GLUE REAR
Face 253

GLUE
FRONT

Face 251

ONE CUBE BOTH FORKING
Constructed from two rotated copies of the first
function from One Cube.
Dark region glues on both sides.

Vertex Position Values
v0 (0,0,0) 0, 0
v1 (0,0,1) 2, 5
v2 (0,1,0) 3, 3
v3 (0,1,1) 0, 3
v4 (1,0,0) 5, 2
v5 (1,0,1) 2, 2
v6 (1,1,0) 3, 0
v7 (1,1,1) 5, 5

Tetrahedra:
v0 v1 v2 v5
v0 v2 v4 v5
v2 v4 v5 v6
v2 v5 v6 v7
v2 v3 v5 v7
v1 v2 v3 v5

Fig. 7 A second Reeb space constructed from six tetrahedra packed into a single cube. Here, the

first field is the same as in Figure 6, while the second as a copy of the first field, rotated by 90

degrees.

14 Hamish Carr and Julien Tierny and Gunther H. Weber

7 Debug Tricks

Once suitable test data is available, development and debugging can proceed. And

here, too, experience indicates that a general debug procedure needs some modifi-

cation to accommodate the demands of topological computation. We have noticed

three basic tricks that we tend to repeat in different contexts:

Text Output: As with all code, text output is particularly useful. Part of this is

because the internal structures are rarely intuitive. As a result, having a consistent

well-formatted text output is priceless for tracking down bugs. Moreover, when im-

proving an existing algorithm, we have found that sharing a common output format

between versions makes it easier to identify where bugs occur, simply by using the

command line tool ‘diff’ to the outputs of the versions. This technique is particu-

larly valuable in practice as data scales: for example, this allowed us to validate new

parallel algorithms [9] against old serial code [8].

Visual Output: Since our target is to visualize data, we normally operate in an

environment where visual output is feasible. One approach is to export meshes at

various stages of an algorithm, then use an external program such as paraview or

TTK to inspect them. Another approach is to build a custom application, either to

support the debug process, to play with particular ideas, or to illustrate the process

for others. One example of this with two-dimensional data is to render a terrain with

the contour tree superimposed: since the (x,y) and h coordinates are known, this

means that visual inspection of relationships is straightforward at smaller scales,

although difficult when many topological events occur.

Over time, the desire to have intermediate visual output was part of the motiva-

tion for the development of the Topology Tool Kit (TTK) by the second author [23],

and readers may find its features valuable.

Graph Output: Since scalar Reeb analysis results in graph-like structures, one

of the most useful debug tricks is to export the internal data structures to a graph

format such as graphviz [13], then to invoke external programs such as dot to gen-

erate PDFs and display them. This is a variant of the stepping method described by

Laramee [18] which we have found useful, especially for small test sets.

At one stage of developing a new parallel algorithm [9], debug involved manual

cross-checking of a contour tree with over 1000 nodes, shown in Figure 8, which

involved using a GUI-based graph editor on the dot format output. Most recently,

improvements to internal data structures have been simplified considerably by graph

outputs that show all of the internal cross-linked pointers (Figure 9), using colour-

coding to show which vertices are processed in which iteration.

None of these techniques is unprecedented in general algorithmic procedure.

However, simple inspection of data structures in memory is particularly difficult

with topological code, so secondary routines such as those described are strongly

recommended to accelerate the debug process, and we now ask at an early stage

what debug visualizations we will need.

Pathological and Test Cases For Reeb Analysis 15

v660

v760v364

v462

v761

v955

v856

v206

v404

v63

v163

v3288

v3285

v1610

v1511

v863

v763

v503

v1614

v1612

v401

v302

v918

v917

v604

v504v300

v301

v2326

v2328

v1016

v1410

v1411

v112

v15

v1521

v1718

v2307

v2505

v2625

v2526

v1503

v1404

v1412

v152

v51

v2921

v2919

v1405

v1291

v1092

v896

v452

v353

v254

v881

v882

v585

v586

v16

v290

v292v587

v3017

v2917

v1114

v1312

v1934

v1933

v508

v507

v1314

v1413

v1581

v1282

v1717

v3510

v3410

v1318

v1417

v2329

v94

v1998

v1900

v1531

v1530

v66

v65

v1128

v1227

v50

v2006

v2005

v2577

v2578

v2331

v2330

v2104

v1727

v1726

v1702

v1603

v1380

v1126

v87

v187

v2916

v1825

v4175

v4076

v889

v790

v2032

v2030

v2028

v2227

v1186

v988

v3068

v3365

v2777

v2677

v826

v923

v783

v784

v2334

v2432

v2220

v1923

v791

v1484

v1583

v922

v921

v2803

v2704

v2706

v2707

v3273

v3173

v3023

v2923

v2183

v2283

v1982

v2180

v1600

v1601

v728

v727

v479

v578

v385

v286

v23

v24

v4452

v4551

v2604

v2537

v2536

v1094

v1093

v25

v1296

v1294

v3212

v3073

v2987

v2988

v2177

v2175

v2174

v2579

v2166

v2265

v932

v1031

v99

v1

v311

v310

v2462

v2463

v2779

v2778

v4549

v3075

v3174

v778

v89

v88

v3484

v3585

v3376

v3475

v1476

v1477

v2417

v2318

v3662

v3760

v2364

v2301

v2302

v2474

v2375

v2313

v2214

v2377

v2376

v3702

v3705

v2215

v3586

v3370

v3371

v1304

v1305

v2402

v1072

v1074

v3903

v3804

v3620

v3618

v2535

v3557

v3659

v3574

v1880

v1979

v1187

v989

v4250

v4051

v3759

v3031

v2933

v4467

v4565

v4193

v4293

v4024

v4023

v4007

v4107

v3588

v3587

v3408

v3409

v3184

v3084

v2989

v2874

v2875

v2575

v2284

v2279

v2278

v2171

v2172

v2125

v2126

v1584

v1585

v1535

v1436

v315

v312

v3977

v3418

v3415

v2785

v2884

v1738

v1837

v2673

v2674

v3000

v3001

v3927

v4026

v2983

v1174

v1175

v3071

v3072

v2118

v2119

v1457

v1356

v4524

v4523

v3728

v3826

v2906

v2905

v2499

v2400

v4622

v3805

v4209

v4208

v3811

v3810

v3671

v3672

v3607

v3608

v2337

v2436

v4066

v3967

v2608

v4822

v4821

v1437

v4052

v4022

v1414

v1513

v3466

v3469

v2790

v2889

v92

v4767

v4668

v630

v629

v2477

v2476

v2520

v2620

v3200

v3101

v386

v487

v4720

v4621

v4256

v4255

v4569

v4497

v4498

v4317

v4219

v4297

v4296v4294

v4206

v4068

v3868

v4011

v4010

v4009

v3914

v4012

v3867

v3578

v3678

v2981

v2882

v1473

v1474

v1316

v1415

v1334

v1333

v1215

v1214

v197

v98

v110

v11

v4753

v4754

v4716

v4717

v4692

v4789

v4506

v4705

v199

v100

v4599

v1579

v1480

v2574

v1831

v1930

v4400

v4499

v4120

v3860

v3761

v2934

v4350

v4351

v3490

v3489

v4749

v4748

v2277

v1339

v1338

v395

v296

v3098

v2999

v4760

v4563

v2826

v2825

v3731

v3730

v4458

v4556

v2699

v2799

v4129

v4228 v4455

v4456

v2011

v2110

v910

v1009

v4655 v2886

v2985

v4804

v4788

v4389

v4390

v3862

v3864

v3169

v3170v2976

v2974

v2738

v2737

v2423

v2523

v2479

v2478

v1683

v4553

v4454

v1285

v1385

v2274

v2275

v2010

v2009

v4327

v4326

v4820

v4395

v4378

v4377

v3964

v3965

v2482

v2481v792

v693

v1780

v1682

v4724

v4723

v4564

v4484

v4385

v3888

v3887

v3472

v3571

v788

v787

v4816

v1287

v1188

v2074

v2073

v3275

v3374

v4764

v4765

v3829

v3828

v2438

v2437

v4386

v2614

v2515

v2013

v2012

v1587

v1387 v413

v411

v3801

v3802

v1857

v1758

v2501

v2502

v984

v885v876

v976

v3912

v3911

v689

v2472

v2373

v3307

v3308

v3420

v3519

v4848

v4847

v3187

v3186

v4111

v4110

v4654

v4555

v590

v593

v4414

v4315

v812

v811

v4653

v2720

v2820

v3714

v3813

v4127

v4126

v3435

v3434

v2892

v2991

v2772

v2773

v775

v875

v4401

v4500

v4082

v4080

v3389

v3488 v3089

v2637

v2735

v2829

v2729

v2198

v2199

v2136

v2133

v1918

v2014

v1733

v1832

v1730

v1828 v1731

v1198

v1199

v1022

v1119

v912

v1010

v998

v2719

v2698

v2599

v2296

v2297

v4280

v4379

v983

v4299

v4398

v2421

v2322

v74

v73

v80

v82

v4850

v1277

v1081

v4320

v4321

v4492

v4490

v2584

v2782

v4493

v4030

v4029

v4694

v4594

v4685

v4586

v3292

v3390

v4516

v4417

v1774

v1776

v3437

v3436

v1672

v1772

v1275

v71

v70

v4763

v4762v4664

v4472

v4471

v4262

v4162

v3168

v3267

v3028

v2929 v2519

v2420

v1888

v1887

v1722

v1821

v1636

v1634

v1497

v1496

v828

v927

v3318

v3317

v3496

v3397

v72

v1625

v1723

v3340

v3339

v3713

v3711

v3615

v3614

v41

v142

v3853

v3854

v4303

v4302v1526

v2140

v2139

v175

v76

v4062

v4059

v2640

v2639

v4502

v4403

v3223

v3222

v1768

v1669

v2970

v1468

v1369

v4799

v4700

v1440

v1538

v652

v653

v4796

v4676

v4577

v3817

v3816

v3235

v3333

v3324

v3323

v2809

v2808

v1329

v1428

v1201

v1300

v730

v829

v319

v318

v849

v751

v43

v4781

v4783

v2670

v2671

v1005

v1103

v4613

v4514

v2488

v2489

v3137

v3236 v4774

v4675

v2289

v2189

v4168

v4169

v3664

v3665

v771

v671

v2388

v1566

v1467

v1766

v1767

v2963

v3063

v4265

v4266

v2492

v2491

v2143

v2242

v534

v633

v2716

v2617

v632

v731

v4180

v4179 v3580

v3380

v2711

v2611

v2694

v2593

v1343

v1441

v1035

v1134

v1037

v1036

v712

v711

v616

v614

v136

v39

v1066

v1067

v4658

v4560

v2713

v2714

v3762

v3722

v3723

v4757

v4313

v4312 v4116

v4115v4018

v4017 v3920

v3919 v3821

v4639

v4442

v238

v237

v4710

v4810 v4610

v4182

v4181

v3009

v2811v36

v37

v3107

v3008

v519

v518

v2996

v3096

v3744

v3546

v3446

v3247

v3204

v3205

v3147

v2896

v2794

v421

v420 v3682

v3681

v2897

v1563

v1562

v425

v423

v2861

v2862 v3501

v3303

v3395

v3295v3782v3500

v1962

v1862

v4773

v4772 v4674

v426

v2159

v2160

v4678

v4677v4382

v4381

v3991

v3989

v4088

v3984

v3893

v3892 v3794

v331

v329

v335

v233

v437

v337

v4443v4435

v4434

v3045

v3044 v2554

v2455 v1647

v1646 v339

v240

v140

v154

v1324

v1807

v19

v3114

v4352

v779

v2117

v2304

v2534

v2986

v2280

v2705

v4470 v4295

v3908

v4121

v2932

v4307

v4494

v4496

v4387

v886

v3090

v1732

v1299

v2718

v1082

v4845

v4587

v1273

v1527

v3960

v4511

v3883

v328

v1015

v799

v58

v1715

v2107

v2366

v3570

v2576

v3706

v1532

v3771

v4271

v2490

v3944

v3499

v489

v2823

v4058

v3477

v3465

v3195

v2124

v2973

v3185

v3905

v1506

v4224

v4200

v33

v2880

v3329

v1693

v2212

Fig. 8 A large contour tree visualized using graphviz for debug purposes. One edge had been

mis-computed, and had to be identified manually.

16 Hamish Carr and Julien Tierny and Gunther H. Weber

s0
s3

s4

s9

s8

s19

s20

s21

s33

s34

s37

s48

s52

s56

s72

s108

s122

s137

s153

s36

s47

s51

s55

s59

s90s99

s101

s115

s150

s341

s610

s103

s106

s112

s121

s136

s170

s186s194

s200 s203

s209

s212

s227

s240

s264

s273

s295

s298

s304

s305

s349

s294

s355

s394

s402

s405

s414

s421

s434

s444

s457

s492

s502

s533

s595

s608

s621

s630

s662

s738

s740

s749

s765

s774

s776

s779

s746

s721

s619

s782

s783s784

s791

s814s815

s874

s905

s881

s889s893

s895

s902

s910

s906

s797

s787

s785

s773

s739

s736

s683

s629

s511

s506

s468

s463

s424

s416

s320

s957

s980

s996

s1038

s1003

s925

s1004

s1009

s1041

s1046

s1061

s1067

s1052

s968

s830

s820

s1071

s1079

s1106

s1116

s1080

s1078

s377

s1131

s1133

s1155

s1183

s1226

s1235

s1237s1240

s1236

s1213

s1134

s1241

s1243s1245

s1249

S0 S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

S21

S22

S23

S24
S25

S26

S27

S28

S29

S30

S31

S32

S33

S34

S35

S36

S37
S38

S39
S40

S41

S43

S44

S45

S46

S47

S48

S49

S50
S51

S52

S53

S54

S55

S56

S57

S58

S59

S60

S61

S62

S63

S64

S65

S66

S67

S68

S69

S70

S71

S72

S73

S74

S75

S76

S77

S78

S79

S80

S81

S82

S83

S84
S85

S86

S87

S88

S89

S90

S91

S92

S93

S94

S95

S96

S97

S98

S99

S100

S101

S102

S103

S104

S105

S106

S107

S108

S109

S110

S111

S112

S113

S114

S115

S116

S117

S118

S119

S120
S121

S122

S123

S124

S125

S126

S127

S128

S129

S130

S131

S132

S133

S134

S135

S136

S137

S138

S139S140

S141

S142

S143

S144

S145

S146

S147

H0

W1

H1

W1

H2

W3

H3

W1

H4

W1

H5

W1

H6

W1

H7

W1

H8

W3

H9

W1

H10

W1

H11

W1

H12

W1

H13

W1

H14

W1

H15

W1

H16

W3

H17

W1

H18

W1

H19

W1

H20

W1

H21

W1

H22

W5

H23

W1

H24

W1

H25

W1

H26

W3

H28

W0

H29

W2

H30

W1

H31

W0

H32

W1

H33

W0

H34

W1

H35

W1

H36

W4

H37

W2

H38

W0

H39

W0

H40

W1

H41

W0

H42

W1

H43

W1

H44

W3

H45

W1

H46

W4

H47

W0

H48

W0

H49

W1

H50

W1

H51

W0

H52

W0

H53

W1

H54

W0

H55

W0

H56

W0

H57

W2

H58

W0

H59

W1

H60

W2

H61

W0

H62

W0

H63

W0

H64

W0

H65

W1

H66

W1

H67

W3
H68

W0

H69

W1H70

W1

H71

W1

H72

W3

H73

W4

H74

W0

H75

W0

H76

W1

H77

W2

H78

W0

H79

W0

H80

W0

H81

W1

H82

W1

H83

W2

H84

W0

H85

W0

H86

W0

H87

W2

H88

W0

H89

W1

H90

W0

H91

W0

H92

W0

H93

W0

H94

W0

H95

W2

H96

W0

H97

W0

H98

W0

H99

W0

Fig. 9 Contour tree of a subset from Figure 8, with additional pointers, and colour-coding for the

iterations of an algorithm.

8 Conclusions

In this paper, we have attempted to report on a crucial phase in algorithmic de-

velopment for computational topology: selection of suitable test cases and debug

procedure. As is apparent above, we have found that the skills of counter-example

construction, and the consideration of pathological cases, have given the greatest

insight into the mathematics, into our algorithms, and into the debug process.

Pathological and Test Cases For Reeb Analysis 17

We have already started work on the theoretical implications of the W-structure,

and intend to report on it due course [16]. In the ideal case, we would also use this

understanding to resolve the algorithmic implications, but these are non-trivial, and

must wait until the current parallel work is fully reported.

Equally, we would encourage our colleagues to report on their test data and strate-

gies, as these are crucial to developing modern topological algorithms, but are cur-

rently communicated by word of mouth, if at all. We note that, with the possible

exception of the 5b data set, no standard benchmarks yet exist for topological algo-

rithms, and suggest that this may be a fruitful direction for the community.

References

1. ALLILI, M., CORRIVEAU, D., DERIVIÈRE, S., KACZYNSKI, T., AND TRAHAN, A. Dis-

crete dynamical system framework for construction of connections between critical regions in

lattice height data. Journal of Mathematical Imaging and Vision 28, 2 (Jun 2007), 99–111.

2. ARGE, L. Personal communication to H. Carr.

3. BOYELL, R. L., AND RUSTON, H. Hybrid Techniques for Real-time Radar Simulation. In

IEEE 1963 Fall Joint Computer Conference (1963), pp. 445–458.

4. CARR, H., AND DUKE, D. Joint Contour Nets. IEEE Transactions on Visualization and

Computer Graphics 20, 8 (2014), 1100–1113.

5. CARR, H., GENG, Z., TIERNY, J., CHATTOPADHYAY, A., AND KNOLL, A. Fiber Surfaces:

Generalizing Isosurfaces to Bivariate Data. Computer Graphics Forum 34, 3 (2015), 241–250.

6. CARR, H., SNOEYINK, J., AND AXEN, U. Computing Contour Trees in All Dimensions.

Computational Geometry: Theory and Applications 24, 2 (2003), 75–94.

7. CARR, H., SNOEYINK, J., AND VAN DE PANNE, M. Simplifying Flexible Isosurfaces with

Local Geometric Measures. In IEEE Visualization (2004), pp. 497–504.

8. CARR, H., SNOEYINK, J., AND VAN DE PANNE, M. Flexible Isosurfaces: Simplifying and

Displaying Scalar Topology Using the Contour Tree. Computational Geometry: Theory and

Applications 43, 1 (2010), 42–58.

9. CARR, H., WEBER, G., SEWELL, C., AND AHRENS, J. Parallel Peak Pruning for Scalable

SMP Contour Tree Computation. In IEEE Large Data Analysis and Visualization (LDAV)

(2016).

10. COX, J., KARRON, D., AND FERDOUS, N. Topological zone organization of scalar volume

data. Journal of Mathematical Imaging and Vision 18, 2 (2003), 95–117.

11. EDELSBRUNNER, H., HARER, J., AND PATEL, A. K. Reeb Spaces of Piecewise Linear

Mappings. In ACM Symposium on Computational Geometry (2008), pp. 242–250.

12. EDELSBRUNNER, H., AND MÜCKE, E. P. Simulation of Simplicity: A Technique to Cope

with Degenerate Cases in Geometric Algorithms. ACM Transactions on Graphics 9, 1 (1990),

66–104.

13. ELLSON, J., GANSNER, E., KOUTSOFIOS, L., NORTH, S. C., AND WOODHULL, G.

Graphviz—Open Source Graph Drawing Tools. In International Symposium on Graph Draw-

ing (2001), Springer, pp. 483–484.

14. GOLD, C., AND CORMACK, S. Spatially Ordered Networks and Topographic Reconstruction.

In ACM Symposium on Spatial Data Handling (1986), pp. 74–85.

15. HELMAN, J., AND HESSELINK, L. Representation and Display of Vector Field Topology in

Fluid Flow Data Sets. Computer (1989), 27–36.

16. HRISTOV, P., AND CARR, H. W-Structures in Contour Trees. In preparation.

17. KACZYNSKI, T. Multivalued maps as a tool in modeling and rigorous numerics. Journal of

Fixed Point Theory and Applications 4, 2 (Dec 2008), 151–176.

18 Hamish Carr and Julien Tierny and Gunther H. Weber

18. LARAMEE, R. Using Visualization to Debug Visualization Software. IEEE Computer Graph-

ics and Applications, 6 (2009), 67–73.

19. REEB, G. Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une

fonction numérique. Comptes Rendus de l’Acadèmie des Sciences de Paris 222 (1946), 847–

849.

20. SFB 382 OF THE GERMAN RESEARCH COUNCIL (DFG). Hydrogen Atom, available at

http://schorsch.efi.fh-nuernberg.de/data/volume/.

21. THEISEL, H. Designing 2D Vector Fields of Arbitrary Topology. Computer Graphics Forum

21, 3 (2002), 595–604.

22. TIERNY, J., AND CARR, H. Jacobi Fiber Surfaces for Bivariate Reeb Space Computation.

IEEE Transactions on Visualization & Computer Graphics 1 (2017), 960–969.

23. TIERNY, J., FAVELIER, G., LEVINE, J. A., GUEUNET, C., AND MICHAUX, M. The Topol-

ogy ToolKit. IEEE Transactions on Visualization & Computer Graphics 24, 1 (2018), 832–

842.

24. TIERNY, J., GYULASSY, A., SIMON, E., AND PASCUCCI, V. Loop Surgery for Volumetric

Meshes: Reeb Graphs Reduced to Contour Trees. IEEE Transactions on Visualization and

Computer Graphics 15, 6 (2010), 1177–1184.

25. WEBER, G. H., SCHEUERMANN, G., AND HAMANN, B. Detecting critical regions in scalar

fields. In Visualization Symposium (VisSym) (2003), EUROGRAPHICS and IEEE TCVG.

26. ZHANG, E., MISCHAIKOW, K., AND TURK, G. Vector Field Design on Surfaces. ACM

Transactions on Graphics 25, 4 (2006), 1294–1326.

