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Pathological and Test Cases For Reeb Analysis

Hamish Carr and Julien Tierny and Gunther H. Weber

Abstract After two decades of computational topology, it is clearly a computation-

ally challenging area. Not only do we have the usual algorithmic and programming

difficulties with establishing correctness, we also have a class of problems that are

mathematically complex and notationally fragile. Effective development and de-

ployment therefore requires an additional step - construction or selection of suitable

test cases. Since we cannot test all possible inputs, our selection of test cases ex-

presses our understanding of the task and of the problems involved. Moreover, the

scale of the data sets we work with is such that, no matter how unlikely the be-

haviour mathematically, it is nearly guaranteed to occur at scale in every run. The

test cases we choose are therefore tightly coupled with mathematically pathological

cases, and need to be developed using the skills expressed most obviously in con-

structing mathematical counter-examples. This paper is therefore a first attempt at

reporting, classifying and analyzing test cases previously used for algorithmic work

in Reeb analysis (contour trees and Reeb graphs), and the expression of a philosophy

of how to test topological code.
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1 Introduction

Computational topology began in the 1980s for scalar fields [14] in geographic in-

formation systems, and for vector fields [15] for scientific visualization, with scalar

field analysis then developing for the analysis of 3D (volumetric) data.

Over time, topological analysis in scientific visualization has included techniques

based on Reeb Analysis, Morse-Smale Analysis, Persistent Homology, Vector Field

Analysis, and Tensor Field Analysis. While articles commonly describe new algo-

rithms, they rarely describe testing strategies, although tools exist that could be ap-

plied, particularly for vector fields [21, 26]. We will, however, restrict our attention

to Reeb Analysis, where we have prior experience. Similarly, while the strategies

for debugging visualization described by Laramee [18] can be applied, we focus

primarily on the test cases we use for topological algorithms.

While these techniques are powerful for understanding data, they are conceptu-

ally complex, but also particularly difficult to implement, as they are susceptible to

a wide range of errors during program construction. Thus, in addition to the nor-

mal struggle to frame an algorithm accurately, robustly and efficiently, we have to

contend with problems due to the difficulty of the underlying mathematics.

Between us, we have accumulated over forty years of experience in working with

topological code. As a result, we have developed and employed a variety of strate-

gies for constructing, testing and debugging programs. These strategies, however,

rarely form part of publications, since there is usually barely room for all the tech-

nical details. Since these strategies are of value to other researchers or programmers

attempting to grapple with complex algorithms, we therefore aim to start the discus-

sion of test cases and testing strategies.

We do not have space for the details of all the algorithmic work, so we start

with a quick overview instead in Section 2. We then sketch a number of conceptual

approaches to test cases in Section 3 and introduce two types of pathological cases,

flat regions in Section 4 and the W-structure in Section 5. Section 6 then gives some

concrete examples of test sets that we have used, and Section 7 discusses some of

the techniques that we use for visualizing intermediate results during debugging.

Then Section 8 summarizes our experience and presents some conclusions.

2 Reeb Analysis

Reeb Analysis studies the relationships between isocontours to extract knowledge

from a mathematical function or data set. Consider a scalar field, i.e. a function

of the form f : Rd → R. Since the data we wish to analyze is normally spatial in

nature, we shall assume d ∈ {2,3,4}. A level set or inverse image of f is defined by

choosing an isovalue h ∈ R, then extracting all points in the domain of the function

with function value h, i.e. f−1(h) = {x ∈ Rd : f (x) = h ∈ R}. These level sets are

often referred to as isocontours (isolines where d = 2, isosurfaces where d = 3).
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Any given isocontour may have multiple connected components, which are am-

biguously referred to as isolines and isosurfaces. We therefore use isocontour com-

ponents to refer to the individual surfaces, in line with the literature.

If we contract each isocontour component to a single point, we construct the

contour tree [3]. For more general functions, where the domain is a general manifold

M , the same construction gives the Reeb graph [19]. Although a special case of the

Reeb graph, the contour tree is easier to compute [6], and the fastest Reeb graph

algorithm reduces the input to a simple domain, computes the contour tree over that

domain, then reconnects the domain (and the tree) to build the Reeb graph [24].

More recently, Reeb Analysis has been extended to functions of the form f :

M → Rr, where r > 1. These cases are covered by the mathematics of fiber topol-

ogy, and we replace isocontours with fibers representing inverse images of the form

f−1(h) = {x ∈ Rd : f (x) = h ∈ Rr}. Continuous contraction of these fibers then

results in the Reeb space [11]. This can be constructed approximately [4] for the

general case, or precisely [22] for the case f : R3 → R2.

Rather than recapitulate all of these algorithms, we refer the reader to the original

papers, and assume some degree of familiarity with the details, as we are presently

interested in describing debugging practice and test cases for them.

3 Approaches

Generally speaking, debugging complex code depends on testing representative

types of data, since exhaustive testing of all possible inputs is combinatorially im-

possible. Within this, test sets may be analytic, stochastic, empirical, or synthetic,

but the choice normally depends on the specific problem domain.

Analytic: Frequently, computation replicates an existing mathematical method,

and as a result, test cases can be constructed from known mathematical examples,

which were generally developed during mathematical debugging of an idea. Since

these are likely to display interesting or challenging behaviour, they are commonly

used as test functions for which the ground truth result is already well understood.

For our work in computational topology, this ideal approach has been less use-

ful than it might seem. This occurs because mathematical development generally

considers smooth infinitely differentiable functions. Since most code assumes sim-

plicial or cubic meshes with linear, trilinear or ad hoc interpolation, the sampled

data rarely captures the original mathematical function exactly unless sampled at

high resolution. This is of particular concern when debugging, as manual validation

of intermediate stages for anything over 103 is time-consuming and wearisome.

Moreover, mathematical reasoning is reductive, and attempts to deal with a small

number of simple cases, in order to stay within the reasoning abilities of a human

being. As a result, analytic examples tend to have simple topology – i.e. relatively

small numbers of topological events. However, the sampling necessary to capture

this causes them to be medium scale in terms of data, which makes them unattractive

for early stage testing. Later on, simple topology has typically already been tested,
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and medium scale examples are used to test combinations of simple topology. At

this point, analytic functions are rarely complex enough to provide good medium

scale tests. We therefore tend to avoid analytic functions except at the conceptual

stage.

Stochastic: A second approach is to generate data sets stochastically - i.e. to

choose randomly from all possible data sets. While this has the merit that it does not

prefer any particular data sets, it fails to guarantee that challenging topology will be

tested early, or indeed ever. As a result, we tend to avoid stochastic approaches.

Curiously, however, as the data scales up, stochastic effects mean that every

pathological mathematical case will occur multiple times, leading to the problem

that we refer to as too much topology. In practice, 1 gigabyte of data means that

there may be tens of millions of topological events. If the isovalues at which they oc-

cur are independent, then even for double precision floating point, it is highly likely

that multiple topological events will happen at the same isovalue, which means that

robust handling of complex topology is always required. This has also driven much

of the work on topological simplification, so paradoxically, while avoiding stochas-

tic approaches in the abstract, we rely heavily on them in practice.

Empirical: Since the goal of computation is to process data, the third approach

therefore looks to existing data, either from prior experience or from a current data

problem. While it is generally simple to obtain data from a variety of sources, there

are at least four problems with empirical data:

1. Scale: as with mathematical test data, empirical data is often at too large a scale

to be useful in the early stages of development, although we commonly use em-

pirical data for testing at the medium to large scale.

2. Noise: many acquired data sets, particularly medical data, are noisy due to the

original acquisition process, and this tends to result in large numbers of topo-

logical events, which are undesireable for small scale testing. Noisy data types

therefore tend to be of more use at the medium to large scale.

3. Blandness: clean empirical data can suffer the opposite problem: that the number

of topological events is much smaller than the data set, again hampering manual

validation. Clean simulation data is particularly prone to this.

4. Clumping: some types of empirical data, such as medical, tend to have heavily

clumped values, as for example where isovalues correspond to different tissue

types. This tends to result in many topological events over a narrow range of

values, again hampering manual validation.

Having said that, empirical data becomes particularly useful at medium to large

scales, since many data types naturally result in large numbers of topological events,

providing a useful test of the scalability of the underlying approach. Moreover, we

have found that terrain data, which is self-similar at different scales, is often useful

for debugging, as discussed below.

Synthetic: Since neither analytic nor empirical approaches give good test sets

for early stages, we find that early stage testing relies heavily on synthetic examples

for algorithm development and debugging. We aim to keep input sizes small, and to

exhibit a rich topological behaviour. We depend in particular on pathological cases
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and counter-example construction. Scalable examples are then built algorithmically

for data construction, by copying a known pathology, by working backwards from

the desired output structure, or by replicating copies of smaller-scale features.

Although mathematical functions would seem to be the best strategy, these are

most commonly C∞, and are a poor fit to the demands of algorithmic development.

We therefore tend to start with small sytnhetic examples, then scale by judicious

selection of empirical data, usually starting either with small terrain examples or

clean simulation data, and progressing to large complex data sets.

As we have noted, we tend to rely on experience with previous problems to

choose data sets that have previously caused algorithmic, theoretical or interpre-

tational difficulties. While not exclusive, there are two major types of data which

we know routinely present these difficulties even at small to medium scales: flat

regions and W-structures.

4 Flat Regions

Morse Theory assumes that critical points occur at unique values, and that there are

no flat regions—i.e. regions with gradient of 0 but dimensionality > 0. While this

considerably simplifies the mathematics, it tends to have the reverse effect in practi-

cal data. And, although perturbation through simulation of simplicity [12] allows us

to reduce the problem to the mathematically tractable, it imposes both algorithmic

and interpretational costs.

Fig. 1 Flat region in the hydrogen data set that is likely a quantization artifact and should be

removed by simulation of simplicity. In the non-quantization version the hole would likely be

filled in continuously until it disappears around a critical point.

To make matters worse, flat regions are frequently observed in quantized data

sets. Many types of data have a narrow range of interesting values, with multiple

topological events clustering tightly together. Even a small amount of quantization

tends to result in flat regions. Moreover, for algorithmic purposes, flat regions are

often broken up by symbolic perturbation [12], which adds a different mathematical
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Fig. 2 Flat region in the hydrogen data set that is likely corresponding to a feature of interest

and should be characterized in its entirety. The ring-structure likely has a correspondence in the

smooth, real-valued function (but sampling on a grid without quantization would break it apart).

ε to each value to guarantee unique values throughout the data. This induces addi-

tional ε-persistent edges, which must then be suppressed in user interfaces and/or

accounted for through simplification.

The converse of this is that these data sets are often valuable test cases of whether

symbolic perturbation is implemented correctly and consistently. A good example

of this occurs in the “nucleon” data set from VolVis. It contains small to moderately

sized regions of constant value that can be resolved using symbolic perturbation.

Equally, the hydrogen data set [20] has extremely large constant regions that

stress test symbolic perturbation implementations. For instance, most of the region

around the hydrogen atom has a constant value, as shown in Figure 1. Here, the flat

region is likely spurious and should be removed by symbolic perturbation. In the

quantized data, a whole “cap” like structure forms around a flat region and subse-

quently closes an isosurface component. In this case, symbolic perturbation leads to

the “correct” behavior: the component closes off smoothly.

However, not all flat regions are unimportant or spurious: they can be the re-

gions of most interest in the data. Again considering the hydrogen data set, Figure 2

shows a flat region of particular interest where two protons interact. Here, even a

continuous function would likely contain a region of constant value, i.e. the cir-

cle around which the ring forms. Since this behaviour is intrinsic to the underlying

phenomenon, suppressing the region to ensure mathematically clean behaviour may

actually mislead interpretation of results.

Ideally, we would be able to distinguish between “spurious” and real features,

and to define stability for them in a mathematically sound framework. This may

involve consideration of the difference between persistent simplification and geo-

metric simplification [8], but is broadly speaking beyond the scope of the current

discussion.

Phenomena like these have also led to approaches that aim at avoiding symbolic

perturbation and identify critical regions directly [10, 25, 1, 17]. For example, in

the hydrogen atom, the “ring structure” shown in Figure 2 appears around a region

of constant function value. Symbolic perturbation breaks the ring up into at least

a maximum (around which the ring starts to form in the perturbed version) and a

saddle (where the ring closes in the perturbed version). One may argue that in this
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instance it is desirable to detect the entire ring structure as a critical entity, i.e. a

circle around which the ring forms.

5 W Structures

While flat regions test out ability to reconcile quantized data with mathematical

formalisms, our other pathological case, the W structure can be constructed either

mathematically or by observation in data.
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Fig. 3 An example of a “W structure” in a contour tree, with construction.

This structure was first shown as an illustration of a potential case by Carr et al. [7]

(as Figure 2). However, the implications of this structure were not fleshed out, and

the illustration was omitted from the later journal paper [8] for reasons of space.

Since then, it has caused difficulties both in proofs [2], and in algorithmic analysis

of recent parallel approaches [9].

We refer to this as a W structure since it consists of a horizontal zigzag of edges

(or paths) in the contour tree. In 2D, these can be constructed as a sequence of nested
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volcanic caldera. Similarly, in 3D, nested shells alternating between minima and

maxima will also display this behaviour. However, once boundary conditions are

taken into account, an alternating sequence of ridges and valleys stretching across

the data set will also result in a W structure.

Once we realize the impact of boundary conditions, it is easy to construct W

structures with any desired complexity, as illustrated in Figure 3. Here, we start

with alternating ridges and valleys. Next, we insert saddle points in each ridge and

valley to divide them into multiple extrema each. Finally, we assign values to each

location, making sure we stay consistent with the assignment of saddle points. As

a result, we see a horizontal zigzag emerge in the contour tree, and is clear that we

can use this construction to make arbitrarily complex W structures.

We note that there are many variations possible. For example, we have chosen

to make all downwards saddles lower than all upwards saddles. While this is not

necessary, it is easy to enforce. Similarly, the exact ordering along the ridges and

valleys can be altered: in larger examples, we can have multiple extrema for each.

We have also chosen to place the saddles in the middle - there are boundary effects

when they are at the edge of the data. Moreover, in practice we tend to use diagonal

ridges and valleys, in order to pack more features into a small space. But the basic

strategy is clear: alternate ridges and valleys generate W-structures, and this gives

us useful test cases at any desired scale.

6 Concrete Examples

In addition to the specific examples of flat regions and W structures, we have histor-

ically used a range of data sets for testing. While the following list is not exhaustive,

it covers a range of data sets we have found useful in practice for test purposes.

The 5b Dataset: This dataset was built around 2000 for testing contour tree

construction. The intent was to pack the maximum number of topological features

into the smallest possible space. As a result, it has shown up in a number of papers.

It was constructed by electing to have two minima, one interior and one exterior,

and four maxima arranged in pairs with toroidal isosurfaces nested around them.

Initially, this data set was constructed as a 3× 3× 3 grid, but was embedded in a

layer of 0s - as a result, it is a 5×5×5 grid, as shown in Figure 4.

Volvis Data: We also use the volvis data repository for testing, in particular the

fuel dataset, which has around 100 critical points in a 64×64×64 data set, although

with more maxima than minima. The hydrogen dataset has also proved useful, as

several of the features of interest form flat regions in the data, which is a useful test

of the simulation of simplicity used to guarantee topological properties.

Protein Data Base: Another source of test data is the PDB protein data base

(www.wwpdb.org). One of the utilities from this project generates sampled electro-

static potential fields at any desired resolution, and these tend to have many topo-

logical events occurring at bonds between atoms. One dataset from this source was
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therefore instrumental in trapping a typographical error in a lookup table that caused

the same surface to be extracted over a hundred times instead of once.

GTOPO30 Data: We have found that terrain data to be valuable for testing

for several reasons. First, terrain data is defined in two dimensions, not three, and

therefore tends to be more useful for small scale testing. Secondly, it is naturally

self-similar, so interesting topology occurs throughout much of the world. Thirdly,

thanks to US government policy, it is freely available from the US Geographical Sur-

vey, in particular the 30 arc-second GTOPO30 dataset (lta.cr.usgs.gov/GTOPO30).

We have found that a small section of terrain around Vancouver captures 40 odd

topological events in about 400 data values, which is still feasible to verify man-

ually. For scaling studies, sections of the Canadian Rockies proved exceptionally

useful: they naturally give rise to W structures due to the parallel nature of moun-

tain ranges. Finally, a section of low-relief terrain from the Canadian Shield tests

both the handling of W structures and of clumped data values. This is not to say that

these are ideal choices: merely that they have been good tests in the past.

Nasty W During the development of the most recent contour tree algorithm, W

structures caused particular problems, and we therefore a number of small examples,

which led us to the construction described above. These were crucial in constructing

valid parallel algorithms, and had the side effect of developing our understanding of

this pathological case. Eventually, we constructed an extreme case to track down a

particularly nasty bug, simplifying the construction to a single triangle strip for ease

of manual debugging. We show a developed version of this, called the “nasty W” in

Figure 5, in which every vertex of the mesh is a supernode in the contour tree.
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One of the particular values of this example is that the W structure ensures that

only two branches are candidates at any given time, with the lower priority one

chosen for removal. Here, our priority measure is the “height” of the branch, which

is not in fact the persistence of the extremum [16]. The right-hand most superarc

(200− 60) in the illustration has a priority of 140, higher than the priority (110)

left-hand superarc (230− 120). The left-hand superarc is therefore removed first,

revealing a new superarc (0− 130) with priority 130: note that at all stages, the

right-hand superarc has the higher priority, so is never removed, and becomes part

of the master branch of the decomposition.

The Nasty W has several interesting properties. First, the master branch includes

neither the global minimum nor the global maximum. Second, the global mini-

mum and global maximum do not pair with each other, indirectly demonstrating

that branch decomposition and contour tree simplification are not equivalent to per-

sistence. And third, the master branch isn’t even the longest monotone path in the

tree! As a result, this (and several other W structures) are now part of our standard

test suite for working on contour tree algorithms.

One Cube and One Cube Forking While less work has been done on Reeb

spaces than on contour trees and Reeb graphs, the same pattern of test case construc-

tion was visible. Real data sets were too complex, while the existing mathematical

examples were difficult to construct in practical data. As a result, we constructed

three small examples of volumetric bivariate meshes, all employing 6 tetrahedra

packed into a single cube with a shared major diagonal (i.e. a Freudenthal subdivi-

sion).

Here, the goal was not to maximize the complexity (at least for our first example),

but rather to develop a small example with non-trivial Reeb space in order to assist

in our own understanding of fiber topology. After several years of limited progress

based on combinations of polynomial functions, this example was developed with

a small test harness and immediately led to fiber surfaces, then played a role in

algorithm development for Reeb spaces CGT15. It is therefore recommended both

as a first tiny data set for testing correctness, but also as an example for the process

of learning and reasoning about Reeb spaces and fiber topology.

This example followed a standard approach in fiber topology, by using a linear

ramp for one of the functions, and choosing the first so that the contour tree on one

face is an upwards fork, while the contour tree on the opposite face is a downwards

fork. In its earliest incarnation in 2002, it was used by the first author to reason

about time-varying contour trees. It then became an example used to explain Reeb

Spaces to students: when the time came to construct a small data set for Reeb Space

computation, it was natural to embody it as a small tetrahedral mesh.

Due to the tetrahedralization chosen, the result is slightly different. However, the

downward fork is recognizable as two flaps (the white regions on the left), while

the upward fork became another two (the white regions on the right). In the middle

gray region, only one fiber exists, represented by gluing the two partial Reeb spaces

together. We constructed paper models of this (and our other examples), and it was

these models that led us to construct fiber surfaces [5].
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Fig. 5 The Nasty W test example. The contour tree was constructed first, then the saddles arranged

along one row of the mesh, the extrema along the other row.

We then constructed the second example, in Figure 7, by replacing the linear

ramp with a rotated copy of the first function. Here there are up to three fiber com-

ponents for any given value. Moreover, two “vertices” of the central square are not

vertices of the mesh, but intersections of the projections of the mesh edges. This

property showed us that certain algorithmic lines of attack would be unfruitful.

Finally, since all of the fibers in these examples were open at the boundary, we

constructed a third to have closed loop fibers around the main diagonal of the cube.

This was less useful than we had hoped, but still helped us to think about vertices

and tetrahedra that overlapped in projection. We therefore omit this example.

These examples are small enough to print out and assemble manually, and we

have found them very useful for comprehension and for debugging.
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v2 v3 v5 v7
v1 v2 v3 v5

Fig. 6 A small Reeb space constructed from six tetrahedra packed into a single cube in the domain

with shared edge v2v5.
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GLUE REAR
Face 253

GLUE
FRONT

Face 251

ONE CUBE BOTH FORKING
Constructed from two rotated copies of the first
function from One Cube.
Dark region glues on both sides.

Vertex Position Values
v0 (0,0,0) 0, 0
v1 (0,0,1) 2, 5
v2 (0,1,0) 3, 3
v3 (0,1,1) 0, 3
v4 (1,0,0) 5, 2
v5 (1,0,1) 2, 2
v6 (1,1,0) 3, 0
v7 (1,1,1) 5, 5

Tetrahedra:
v0 v1 v2 v5
v0 v2 v4 v5
v2 v4 v5 v6
v2 v5 v6 v7
v2 v3 v5 v7
v1 v2 v3 v5

Fig. 7 A second Reeb space constructed from six tetrahedra packed into a single cube. Here, the

first field is the same as in Figure 6, while the second as a copy of the first field, rotated by 90

degrees.
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7 Debug Tricks

Once suitable test data is available, development and debugging can proceed. And

here, too, experience indicates that a general debug procedure needs some modifi-

cation to accommodate the demands of topological computation. We have noticed

three basic tricks that we tend to repeat in different contexts:

Text Output: As with all code, text output is particularly useful. Part of this is

because the internal structures are rarely intuitive. As a result, having a consistent

well-formatted text output is priceless for tracking down bugs. Moreover, when im-

proving an existing algorithm, we have found that sharing a common output format

between versions makes it easier to identify where bugs occur, simply by using the

command line tool ‘diff’ to the outputs of the versions. This technique is particu-

larly valuable in practice as data scales: for example, this allowed us to validate new

parallel algorithms [9] against old serial code [8].

Visual Output: Since our target is to visualize data, we normally operate in an

environment where visual output is feasible. One approach is to export meshes at

various stages of an algorithm, then use an external program such as paraview or

TTK to inspect them. Another approach is to build a custom application, either to

support the debug process, to play with particular ideas, or to illustrate the process

for others. One example of this with two-dimensional data is to render a terrain with

the contour tree superimposed: since the (x,y) and h coordinates are known, this

means that visual inspection of relationships is straightforward at smaller scales,

although difficult when many topological events occur.

Over time, the desire to have intermediate visual output was part of the motiva-

tion for the development of the Topology Tool Kit (TTK) by the second author [23],

and readers may find its features valuable.

Graph Output: Since scalar Reeb analysis results in graph-like structures, one

of the most useful debug tricks is to export the internal data structures to a graph

format such as graphviz [13], then to invoke external programs such as dot to gen-

erate PDFs and display them. This is a variant of the stepping method described by

Laramee [18] which we have found useful, especially for small test sets.

At one stage of developing a new parallel algorithm [9], debug involved manual

cross-checking of a contour tree with over 1000 nodes, shown in Figure 8, which

involved using a GUI-based graph editor on the dot format output. Most recently,

improvements to internal data structures have been simplified considerably by graph

outputs that show all of the internal cross-linked pointers (Figure 9), using colour-

coding to show which vertices are processed in which iteration.

None of these techniques is unprecedented in general algorithmic procedure.

However, simple inspection of data structures in memory is particularly difficult

with topological code, so secondary routines such as those described are strongly

recommended to accelerate the debug process, and we now ask at an early stage

what debug visualizations we will need.
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Fig. 8 A large contour tree visualized using graphviz for debug purposes. One edge had been

mis-computed, and had to be identified manually.
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Fig. 9 Contour tree of a subset from Figure 8, with additional pointers, and colour-coding for the

iterations of an algorithm.

8 Conclusions

In this paper, we have attempted to report on a crucial phase in algorithmic de-

velopment for computational topology: selection of suitable test cases and debug

procedure. As is apparent above, we have found that the skills of counter-example

construction, and the consideration of pathological cases, have given the greatest

insight into the mathematics, into our algorithms, and into the debug process.
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We have already started work on the theoretical implications of the W-structure,

and intend to report on it due course [16]. In the ideal case, we would also use this

understanding to resolve the algorithmic implications, but these are non-trivial, and

must wait until the current parallel work is fully reported.

Equally, we would encourage our colleagues to report on their test data and strate-

gies, as these are crucial to developing modern topological algorithms, but are cur-

rently communicated by word of mouth, if at all. We note that, with the possible

exception of the 5b data set, no standard benchmarks yet exist for topological algo-

rithms, and suggest that this may be a fruitful direction for the community.
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1. ALLILI, M., CORRIVEAU, D., DERIVIÈRE, S., KACZYNSKI, T., AND TRAHAN, A. Dis-

crete dynamical system framework for construction of connections between critical regions in

lattice height data. Journal of Mathematical Imaging and Vision 28, 2 (Jun 2007), 99–111.

2. ARGE, L. Personal communication to H. Carr.

3. BOYELL, R. L., AND RUSTON, H. Hybrid Techniques for Real-time Radar Simulation. In

IEEE 1963 Fall Joint Computer Conference (1963), pp. 445–458.

4. CARR, H., AND DUKE, D. Joint Contour Nets. IEEE Transactions on Visualization and

Computer Graphics 20, 8 (2014), 1100–1113.

5. CARR, H., GENG, Z., TIERNY, J., CHATTOPADHYAY, A., AND KNOLL, A. Fiber Surfaces:

Generalizing Isosurfaces to Bivariate Data. Computer Graphics Forum 34, 3 (2015), 241–250.

6. CARR, H., SNOEYINK, J., AND AXEN, U. Computing Contour Trees in All Dimensions.

Computational Geometry: Theory and Applications 24, 2 (2003), 75–94.

7. CARR, H., SNOEYINK, J., AND VAN DE PANNE, M. Simplifying Flexible Isosurfaces with

Local Geometric Measures. In IEEE Visualization (2004), pp. 497–504.

8. CARR, H., SNOEYINK, J., AND VAN DE PANNE, M. Flexible Isosurfaces: Simplifying and

Displaying Scalar Topology Using the Contour Tree. Computational Geometry: Theory and

Applications 43, 1 (2010), 42–58.

9. CARR, H., WEBER, G., SEWELL, C., AND AHRENS, J. Parallel Peak Pruning for Scalable

SMP Contour Tree Computation. In IEEE Large Data Analysis and Visualization (LDAV)

(2016).

10. COX, J., KARRON, D., AND FERDOUS, N. Topological zone organization of scalar volume

data. Journal of Mathematical Imaging and Vision 18, 2 (2003), 95–117.

11. EDELSBRUNNER, H., HARER, J., AND PATEL, A. K. Reeb Spaces of Piecewise Linear

Mappings. In ACM Symposium on Computational Geometry (2008), pp. 242–250.
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