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Upper Bound Limit Analysis of Soils

With a Non-linear Failure Criterion

Rui, Z. and Smith, C.C.

1

Abstract: Limit analysis is a widely used technique for the analysis of geotechnical collapse2

states and there exists a significant body of literature covering its application to soils with a3

linear failure criterion. However, such a failure criterion is often an idealisation of an actual4

non-linear response for which available analytical techniques are limited. This paper presents5

a new fully general solution procedure for generating upper bound multi-wedge rigid block6

mechanisms for a soil with a non-linear failure criterion, utilising a curved interface that7

obeys the non-linear yield function flow rule along its full length. This work extends the8

long established kinematic sliding wedge approach for linear soils and is illustrated through9

application to active and passive retaining wall and anchor/trapdoor problems. Through10

additional consideration of the lower bound solution, close bounds on the retaining wall11

problem to within ∼1% are established. The ability of the non-linear upper bound solution to12

predict the shear and normal stress at every point along the failure surface is discussed.13

Key words: Limit analysis; Nonlinear failure; Upper Bound.14

1. Introduction15

The prediction of failure mechanisms in geotechnical engineering has many important applications16

in the design of such structures as retaining walls, foundations, slopes, buried pipes and culverts,17

ground anchors and silos. Limit analysis is a common approach applied to such problems and the18

theory has been extensively covered by e.g. Chen (1975) and Chen & Liu (1990), primarily for soils19

following a linear Mohr Coulomb criterion. However, the assumption of linear behaviour of soil is an20

idealisation and non-linear behaviour can be significant for some soils and fractured rock systems (e.g.21

Baker 2004, Hoek & Brown 1997, Mohammadi & Tavakoli 2015).22

While recent work by e.g. Ukritchon & Keawsawasvong (2018) has demonstrated the modelling23

of non-linear behaviour in a finite element limit analysis framework, this paper is concerned with a24

discrete slip-line kinematic approach, which has application both for hand calculations and as part of a25

general purpose numerical approach e.g. Smith & Gilbert (2007) and Hambleton & Sloan (2013).26

Several authors have addressed such a problem. Baker & Frydman (1983) and Chen (1975) de-27

scribed a method for undertaking slope stability analysis for non-linear soils using a variational ap-28

proach, but which required numerical integration. Soon & Drescher (2007) presented an approach29

based on the classic multi-wedge rigid block upper bound kinematic method, using straight slip-lines30

but a specific linear yield surface for each sliding interface, where this linear surface was selected as a31

tangent to the non-linear yield surface. The specific tangent location was chosen as part of a multivari-32
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able optimization across all slip-lines.33

As an alternative approach, other workers (e.g. Fraldi & Guarracino 2009, Yang & Huang 2011,34

Yang & Long 2015 and Zhang & Yang 2018) used a variational approach to analyse the stability35

of anchors, trapdoors and tunnels with a single curved slip-line, defined by a closed form equation,36

that obeys the non-linear yield function flow rule along its full length. However, these analyses were37

restricted to single wedges constrained to move vertically and to the authors’ knowledge this approach38

has not been extended to a wider range of problems. By extending the approach presented by Fraldi &39

Guarracino 2009, this paper presents a new fully general form of the variational approach for analysing40

translational upper bound problems using the classic multi-wedge rigid block upper bound kinematic41

method, based on curved slip-lines defined by closed form equations, and following the optimisation42

framework of e.g. Soon & Drescher (2007).43

Examples are given for the active and passive cases of a smooth retaining wall and shown to match44

to within ∼1% of the corresponding simple non-linear lower bounds, thus for the first time giving45

almost exact plastic solutions for these cases. An example of how the approach can deal with a multi-46

wedge analysis is also given for an anchor uplift problem. An intriguing aspect of the solutions are that47

they give exact values of shear and normal stresses along the slip-lines, which is not normally obtained48

from an upper bound analysis which can only return forces on wedge interfaces. The interpretation of49

such values is discussed in the context of the examples studied.50

2. Conventional upper bound mechanism analysis51

Conventional upper bound rigid block mechanism analysis is well established in geotechnical en-52

gineering and consists of postulating a failure mechanism consisting of sliding wedges. Kinematic53

compatibility and an associative flow rule can be used to construct a hodograph that allows the veloc-54

ities of the wedges to be determined and the relative velocities across the slip-lines computed. These55

can be used to determine energy dissipation on the slip-lines, and together with external work can be56

used to determine the collapse load. A simple two-wedge example for an anchor pullout problem (after57

e.g. Murray & Geddes 1987) is shown in Fig. 1.58

Fig. 1. Simple two-wedge anchor analysis for a linear soil showing mechanism and hodograph.

The essence of the method is to determine the angle of dilation and energy dissipation function59

for each slip-line. For a linear Mohr-Coulomb (c, φ) material of unit weight γ, the angle of dilation60

ψ is equal to the angle of friction φ for an upper bound analysis. The dissipation function for relative61

slip s parallel to the slip-line is cls where l is the slip-line length and s = v cosψ where v is the62

relative velocity jump across the slip-line. The self weight external work for each wedge is computed63
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by determining the dot product of the absolute velocity of a wedge and its self weight. This together64

with the hodograph leads to the following equations for the two-wedge anchor analysis.65

[1]
v0

sin(θ1 + θ2 − ψ1 + ψ2)
=

v1
sin(π/2 − θ2 − ψ2)

=
v2

sin(π/2 − θ1 + ψ1)

[2] v01 = v1 · sin(θ1 − ψ1)

[3] v02 = v2 · sin(θ2 + ψ2)

with constraints:

[4] ψ1 ≥ θ1 − π/2

[5] ψ2 ≤ π/2 − θ2

The force on the anchor can be determined from the following energy balance equation.66

[6] Fv0 = γHBv0+qBv0+2 (WA2v02 + qHv0/ tan θ2 −WA1v01 + clbcv2 cosψ2 + clacv1 cosψ1)

For a linear soil, the optimal solution is one for which v1 = 0 and θ2 = 90−φ, giving the following67

equation for F :68

[7]
F

γHB
= 1 +

H

B
tanφ+

q

γH
+

2q

γB
tanφ+

2c

γB

The aim of this paper is to demonstrate how this form of mechanism analysis for linear Mohr-69

Coulomb materials can be extended to a material possessing a non-linear yield surface for translational70

mechanisms in a fully general way.71

3. Non-linear yield surface72

Various non-linear strength functions have been proposed for soils and rocks, such as bilinear73

functions Lefebvre (1981), trilinear functions De Mello (1977) and the Hoek-Brown failure criterion74

Hoek & Brown (1997). Non-linear power-type failure laws for geomaterials are increasingly being75

adopted for investigations of the stability of geotechnical problems (e.g. Baker 2004, Zhang & Chen76

1987, Anyaegbunam 2013).77

In general, as shown in Fig. 2, a non-linear power-law failure criterion can be expressed as,78

[8] τ/c0 = (a+ σn/σt)
1/m

where σn and τ are the normal and shear stresses on the failure surface, respectively; c0 and σt are79

normalisation stresses; and a and m are scalar constants. When m = 1, equation (8) reduces to the80

well-known linear Mohr-Coulomb failure criterion:81
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[9] τ = c+ σn tanφ

where a = 1, co = c and σt = c/ tanφ.82

In this paper two exemplar non-linear materials will be modelled, representing (i) a dense sand83

(based on the model by Bolton 1986 using a relative density index ID = 1) and (ii) a fractured rock84

mass (approximating a Hoek-Brown material with σci = 5 MN/m2,mi = 9.6,GSI = 20,mb = 0.55,85

Hoek & Brown 1997 ). The properties are given in Table 1. These were obtained by generating the86

relevant yield surface and carrying out a least squares best fit to equation (8). For comparison two87

linear soils were also modelled using (i) a simple c = 1 kN/m2, φ = 30o Mohr-Coulomb soil and (ii)88

a c = 0, φ = 33o soil corresponding to the previous Bolton model at critical state. In both these cases,89

a value of m = 1.001 was adopted to model a closely linear system while still capable of adopting the90

non-linear solution methodology. It is shown in Appendix A that this leads to an error of < 0.037%91

in modelling the linear yield surface. Since the aim of the paper is to illustrate and verify the solution92

process and to contextualise it, specific engineering examples will be studied rather than undertaking93

parametric studies.94

Fig. 2. Linear Mohr-Coulomb and non-linear power-law (equation 8) failure criteria.

Linear Non-linear

Parameter Cohesive-frictional soil Loose sand Dense sand Fractured rock

(CF) (LS) (DS) (FR)

c = 1 kPa, φ = 30o Bolton ID = 0 Bolton ID = 1 Hoek-Brown

a(-) 1 0 0 0

c0(kN/m2) 1 1 1.697 1.8242 × 103

σt(kN/m2) 1/ tan 30o 1/ tan 33o 1 5 × 103

m(-) 1.001 1.001 1.1182 1.3155

γ(kN/m3) 15 15 15 22

Table 1. Exemplar linear and non-linear soil properties and unit weights.

c©2018 NRC Canada
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4. Non-linear upper bound failure mechanism analysis for single slip-line95

with variational approach96

Consider a slip-line, which may be curved in the general case, connecting two points A and B97

whose secant is orientated at an angle θ to the positive x-axis and of length l. Further consider that98

there is a velocity jump of v across this slip-line orientated at a fixed angleψs to its secant. This velocity99

will therefore be orientated at an angle α to the vertical where α = π/2−κψs−θ and κ = ±1 denotes100

clockwise or anticlockwise shear respectively across the slip-line. The aim is to determine the shape101

of the slip-surface joining A and B which will no longer be a secant, but will curve slightly above or102

below the secant depending on the relative movement as shown in Fig. 3, such that the sum of the103

local dilation ψ and slip-line gradient at any point is constant and equal to the global slip-line dilation104

ψs. This preserves the assumption of rigid body movement of adjacent wedges. To maintain the work105

calculation for the general mechanism analysis similar to the linear case, a dissipation coefficient Ĉ for106

a non-linear material will be derived equivalent to the cohesion intercept term cl for a linear soil and107

where the self weight of the wedges delineated by the secants may still be used, but where the slip-line108

will also have its own additional self weight term Ŵ defined by the area of soil between the curved109

slip-line and the secant. This may be negative or positive depending on the direction of relative shear.110

(a) Clockwise (b) Anticlockwise

Fig. 3. Non-linear kinematics of a slip-line (long-dashed line between A and B). Relative shear across slip-line:

(a) clockwise; (b) anticlockwise.

4.1. General analysis form for a single slip-line111

4.1.1. Compatibility112

For a single slip-line as shown in Fig. 3, the mass of soil above the slip-line moves as a rigid block113

at velocity v and at an angle α to the vertical relative to the soil below. Let y = f(x) be the equation114

of the velocity discontinuity surface.115

This can be expressed in a rotated coordinate system as η = f(ξ), where:116

[10]

[

ξ
η

]

=

[

cosα − sinα
sinα cosα

] [

x
y

]

Use of this new coordinate system simplifies the subsequent analysis by making the velocity v117

parallel to the η axis. By assuming the plastic potential, ς , to be coincident with the Mohr envelope118

and considering τ is positive, the following can be defined:119

c©2018 NRC Canada
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[11] ς = τ − c0(a+ σn/σt)
1/m

Adapting the approach developed for a tunnel analysis in a Hoek-Brown material by Fraldi &120

Guarracino (2009), and assuming associative flow, the local angle of dilation ψ may be given by the121

following equation:122

[12] tanψ =
dτ

dσn
=
c0(a+ σn/σt)

1−m

m

mσt

and because relative movement of the block above the discontinuity is parallel to the η-axis, the fol-123

lowing can also be written:124

[13] tanψ =
1

κf ′(ξ)
, cosψ = κf′(ξ)

[

1 + f′(ξ)2
]−

1
2 , sinψ =

[

1 + f′(ξ)2
]−

1
2

where κ = 1 for the clockwise relative shear case and κ = −1 for the anti-clockwise relative shear125

case.126

Combining equations (12) and (13) gives127

[14] σn = −a · σt + σt

(

c0
mσt

)
m

(m−1)

[κf
′

(ξ)]
m

(m−1)

and substitution in equation (8) gives,128

[15] τ = c0

(

c0
mσt

)
1

(m−1)

[κf ′(ξ)]
1

(m−1)

Now the plastic strain rates can be written as follows:129

[16] ε̇n = λ
∂ς

∂σ
= −λ

c0
mσt

(a+ σn/σt)
(1−m)/m

[17] γ̇ = λ
∂ς

∂τ
= λ

where λ is a scalar parameter, ε̇n is the normal plastic strain rate and γ̇ is the shear plastic strain130

rate. Based on the kinematics occurring on the slip-line, as shown in Fig. 3, the plastic strain rate131

components can also be written in the form132

[18] ε̇n = vn = −
v

w

[

1 + f′(ξ)2
]−

1
2

[19] γ̇ = vt =
v

w
κf′(ξ)

[

1 + f′(ξ)2
]−

1
2

where η = f(ξ) is the function of velocity discontinuity surface and f′(ξ) is the first derivative of f(ξ).133

v is the velocity jump at the slip-line and w is the thickness of the plastic zone (assumed infinitesimal).134

c©2018 NRC Canada
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A dot denotes differentiation with respect to time and a prime with respect to ξ, i.e. v = ∂u/∂t,135

f′(ξ) = ∂f(ξ)/∂ξ136

In order to enforce compatibility, from equation (17) and equation (19) (or, equivalently from137

equation (14), equation (16) and equation (18)) it follows that:138

[20] λ =
v

w
κf′(ξ)

[

1 + f′(ξ)2
]−

1
2

4.1.2. Determination of internal energy dissipation and external work139

Based on the plastic potential function equation (11), the plastic strain increment is proportional140

to the gradient of the plastic potential function through the associated flow rule. The dissipation en-141

ergy associated with the internal forces at any point on the surface, Ḋi can therefore be obtained by142

combining equation (14), equation (15), equation (18) and equation (19):143

[21] Ḋi = σnvn + τvt =
v

w

[

1 + f′(ξ)2
]−

1
2

[

a · σt + σt

(

c0
mσt

)
m

(m−1)

(m− 1)[κf′(ξ)]
m

(m−1)

]

By considering the profile of failure surface for the single wedge, as shown in Fig. 3 the energy144

dissipation along the velocity discontinuity surface can be obtained by integrating Ḋi over the interval145

ξ = ∆y sinα to ∆x cosα where ∆x = l cos θ and ∆y = l sin θ.146

Hence

[22]

D =

∫ ∆x cos α

∆y sin α

Ḋiw
√

1 + f′(ξ)2dξ

= v

∫ ∆x cos α

∆y sin α

{

a · σt + σt

(

c0
mσt

)
m

(m−1)

(m− 1)[κf ′(ξ)]
m

(m−1)

}

dξ

The work done (We) by the external force (gravity) on the area between the curve and the secant is147

given as follows (NB in the active case, the area is negative, but the integration is also negative.):148

[23]

We = κvγ cosα

[

∫ ∆x cos α

∆y sin α

f(ξ)dξ + ∆y cosα(∆x cosα− ∆y sinα) − 0.5l2 sin(θ + α) cos(θ + α)

]

4.1.3. Solution characterizing optimal slip-line geometry149

In order to describe the optimal shape of the slip-line, it is necessary to obtain the explicit expression150

of f(ξ) by constructing an objective function Λ consisting of the sum of the contribution of the slip-line151

to the external work rate and the rate of the internal energy dissipation,152

[24]

Λ = D −We

= v

∫ ∆x cos α

∆y sin α

ζ[f(ξ), f ′(ξ), ξ]dξ

− vκγ cosα
[

∆y cosα(∆x cosα− ∆y sinα) − 0.5l2 sin(θ + α) cos(θ + α)
]

in which153

c©2018 NRC Canada
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[25] ζ[f(ξ), f ′(ξ), ξ] = σt

[

a+

(

c0
mσt

)
m

(m−1)

(m− 1)[κf′(ξ)]
m

(m−1)

]

− κγf(ξ) cosα

In order to obtain the effective failure surface for a given slip-line of angle θ and length l, it is154

necessary to search for the extremum value of objective function Λ using Euler’s equation through the155

variational method. The expression of the variational equation of Λ for stationary conditions can be156

written as:157

[26]
∂Λ

∂f(ξ)
−

∂

∂ξ

[

∂Λ

∂f ′(ξ)

]

= 0

and the explicit form of the Euler’s equation for the equation (25) can thus be obtained as:158

[27] κγ cosα+
mσt

(m− 1)

(

c0
mσt

)
m

m−1

[κf ′(ξ)]
2−m

m−1 [f′′(ξ)] = 0

Equation (27) is a non-linear second-order homogeneous differential equation. A first integration159

yields160

[28] mσt

(

c0
mσt

)
m

m−1

[κf ′(ξ)]
1

m−1 = −κγ cosα · ξ + n0

where n0 is integration constant coefficient. Re-arrangement of this equation gives:161

[29] f ′(ξ) = κmk0(
n0

γ · cosα
− κξ)m−1

in which162

[30] k0 =
σt

γ cosα

(

γ · cosα

c0

)m

=
σt

c0

(

γ · cosα

c0

)m−1

=
σt

cm0
(γ cosα)m−1

By a further integral calculation process the equation for the velocity discontinuity surface is given163

by:164

[31] f(ξ) = −k0(
n0

γ · cosα
− κξ)m + n1

and a further integration provides an expression required later for the weight correction term:165

[32]

∫

f(ξ).dξ =
κk0

m+ 1
(

n0

γ · cosα
− κξ)m+1 + n1ξ + const

where n0 and n1 are two unknowns representing the integration constant coefficients. These can166

be determined using the two boundary conditions:167

c©2018 NRC Canada
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[33] f(ξ = ∆y sinα) = −∆y cosα

[34] f(ξ = ∆x cosα) = ∆x sinα

Hence:168

[35] −k0(
n0

γ cosα
− κ∆x cosα)m + n1 − ∆x sinα = 0

and169

[36] n1 = −∆y · cosα+ k0(
n0

γ · cosα
− κ∆y · sinα)m

It is not possible to derive closed form expressions for n0 and n1, however by substituting equation170

(36) into equation (35), these may be determined straightforwardly numerically using standard root171

finding algorithms. There is a small range of values of α and hence ψs that will give valid solutions.172

This solution may be expressed as a dilation (relative to the secant) of ψs = κ(π/2 − α − θ),173

a coefficient of dissipation Ĉ(ψs, θ, l) based on equation (22) and a correction to the wedge weight174

above the slip-line Ŵ (ψs, θ, l) based on equation (23). Ĉ is equivalent to the term cl for the linear175

case. Thus Ĉ is multiplied by s = v cosψs to give the full dissipation. Hence expressions for Ĉ and176

Ŵ can be written in terms of the derived function f :177

From equation (22):178

[37]

Ĉ(ψs, θ, l) =
κσt

cosψs

(

m− 1

m+ 1

)(

γ cosα

c0

)m

[(
n0

γ cosα
− κ∆y sinα)m+1

− (
n0

γ cosα
− κ∆x cosα)m+1]

+ a ·
σt

cosψs
(∆x cosα− ∆y sinα)

and from equation (23) and equation (32):179

[38]

Ŵ (ψs, θ, l)

κγ
=

κk0

m+ 1
[(

n0

γ cosα
− κ∆x cosα)m+1

− (
n0

γ cosα
− κ∆y sinα)m+1]

+ n1(∆x cosα− ∆y sinα)

+ ∆y cosα(∆x cosα− ∆y sinα) − 0.5l2 sin(θ + α) cos(θ + α)

These functions are straightforward to compute using a spreadsheet or computer program.180

5. General solution procedure181

The following outlines a typical hand solution process following the standard form of linear upper182

bound wedge analysis.183

1. Postulate an appropriate multi-wedge failure mechanism, involving a series of nodes linking184

slip-lines that delineate each wedge, allocating an appropriate value of global dilation ψs to each185

slip-line. ψs must be chosen to generate real values of n0 and n1 for each slip-line.186

c©2018 NRC Canada
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2. Based on the straight lines joining each node and the values of ψs, draw the corresponding187

hodograph.188

3. Determine the acting weight W of each wedge based on the area of the wedge delineated by189

straight lines joining each node, and adjusted according to the term Ŵ for each slip-line edge of190

the wedge.191

4. Determine the external work done using the velocities from the hodograph and the weight of192

each wedge, and the external live and dead loads.193

5. Determine the internal energy dissipation Ĉv cosψs based on the relative velocities v across194

each slip-line.195

6. Equate external work and internal energy dissipation to determine the live load.196

6. Application to specific problems197

Having derived a generic solution process, its application will be illustrated through a range of spe-198

cific geotechnical problem types: (i) active/passive smooth retaining wall, and (ii) an anchor/trapdoor.199

This may be done by deriving the full energy equation for the specific problem and then minimising the200

energy by varying the assumed values of wedge angle and dilation angle ψs for each slip-line, to give201

the optimal upper bound for the slip-line mechanism. In this note, the optimization of the upper bound202

solution is carried out numerically using MATLAB’s built in multi-parameter minimisation functions.203

6.1. Active and passive retaining wall204

Consider a frictionless vertical wall of height H with horizontal active or passive load F , and a205

surface surcharge q with a single wedge at angle θ to the horizontal and of area 0.5H2/ tan θ as shown206

in Fig. 4 together with the hodograph. The slip-line length l = H/ sin θ.207

If the dilation is assumed to be ψs, the wedge moves at a velocity v0 at an angle θ + κψs to the208

horizontal and the full energy equation may be expressed as:209

[39] Fκv0 cos(θ+κψs) =

[

H2γ

2 tan θ
− κŴ (ψs, θ, l) +

qH

tan θ

]

κv0 sin(θ+κψs)+Ĉ(ψs, θ, l)v0 cosψs

This is identical to a conventional linear analysis with the addition of the Ŵ term and the replace-210

ment of the cl term by Ĉ. To find the optimal upper bound, it is necessary to find max F (ψs, θ) for the211

active case and min F (ψs, θ) for the passive case.212

The optimization must thus be done in two parameters rather than the one (θ) for the linear prob-213

lem and is straightforward to carry out numerically using equation (39). Solutions using the example214

parameter sets given in Table 1, are given in Table 2. A single maximum/minimum exists in each case215

as shown in Fig. 5 for the fractured rock material. Note that the solutions assume that tensile stresses216

are sustainable on the back of the wall for the cohesive-frictional soil.217

Each model was checked against a simple Rankine lower bound based on the non-linear yield218

surface (see Appendix B). Very close matches were found for the approximately linear materials219

as expected, and matches within ∼1% for the non-linear materials. The values thus bracket the true220

solution very closely. Comparison of the lower bound solutions to the known linear solution for the first221

two materials show they are close. Further checks show that they do converge as would be expected as222

m is reduced towards 1.0.223

Fig. 6 shows the feasible range of optimal slip-lines for the passive wall fractured rock case for224

different values of θ with the optimum value of ψs in each case annotated on each line.225

c©2018 NRC Canada
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(a) Active

(b) Passive

Fig. 4. Failure mechanism analysis for smooth retaining wall with surcharge load.

c©2018 NRC Canada



12 unknown Vol. 99, 2018

Failure Parameter θopt ψs,opt n0 Fupper Flower % Flinear

mode set (kN/m) (kN/m) difference (kN/m)

CF 59.96o 29.92o -8.927 65.2573 65.2573 0.000 65.05983

LS 61.46o 32.91o -7.836 62.8278 62.8278 0.000 62.6451

Active DS 70.90o 50.78o -1.5629 23.8231 23.8633 0.169 -

FR 71.99o 51.24o -2.791 26.8704 27.3218 1.680 -

CF 30.05o 29.89o 102.93 652.3262 652.3262 0.000 654.8205

LS 28.56o 32.88o 111.32 717.7809 717.7809 0.000 720.8255

Passive DS 22.38o 44.39o 168.81 1349.0075 1347.7533 0.093 -

FR 26.18o 36.10o 201.42 1511.5016 1506.3272 0.342 -

Table 2. Retaining wall solutions for the case q = 5 kN/m2, and H = 5m, using material properties from Table

1. The values of Flinear are computed using conventional Rankine equations for a smooth retaining wall where

e.g. σ′

h = Kaσ
′

v −Kacc
′, Ka = tan2(π/4 − φ/2) and Kac = 2

√
Ka, and similarly for the passive case.
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Fig. 5. Variation of thrust F with θ and ψs for a smooth retaining wall with surcharge load for the fractured rock

material (properties given in Table 1) and q = 5 kN/m2, and H = 5m.

To put the results into context in comparison with a conventional linear analysis, a simple conser-226

vative analysis of the fractured rock problem could be carried out using a secant angle of friction across227

a suitable stress range. The non-linear lower bound analysis in Appendix B predicts a horizontal stress228

of ∼ 450 kN/m2 at the wall base for the fractured rock parameters. Thus, selecting a range of 0 to 450229

kN/m2, which roughly spans the range of stresses expected in the problem, gives a secant angle of 33o
230

(almost the same as the loose sand material). This gives a passive load of 1017 kN/m using a simple231

Rankine analysis (using the fractured rock self weight of 22 kN/m3, and the linear angle of shearing232

resistance of 33o). This is about 2/3 of the non-linear result.233

6.2. Anchor/trapdoor (two-wedge)234

The general approach is now illustrated with a two-wedge analysis for an anchor/trapdoor following235

the geometry shown in Fig. 1 and adopting an anchor width B = 5m.236

There are now four variables to be optimised which are θ1, θ2, ψs1 and ψs2 . The hodograph and237

corresponding equations (1) - (5) remain the same as for the linear case and equation (6) is extended to238

c©2018 NRC Canada



13

Fig. 6. Sample set of possible passive slip-lines for fractured rock case for different values of θ and with ψs

optimized for this value of θ (the actual feasible range of values for θ ranges between 0.1o and 84o).

the following:239

[40]
Fv0 =γHBv0 + qBv0 + 2qHv0/ tan θ2 + 2[WB2 · v02 − Ŵ (ψs2, θ2, l2) · v2 −WB1 · v01

− Ŵ (ψs1, θ1, l1) · v1 + Ĉ(ψs2, θ2, l2)v2 cosψs2 + Ĉ(ψs1, θ1, l1)v1 cosψs1]

where l1 = H/ sin θ1 and l2 = H/ sin θ2.240

Parameter set θ1 ψs1 θ2 ψs2 Fupper(kN/m) Fprev (kN/m)

Cohesive frictional any any 60.00o 29.99o 655.28 655.29
Loose sand any any 57.00o 32.99o 675.05 675.05
Dense sand any any 43.78o 46.22o 878.51 879.45

Fractured rock any any 49.45o 40.55o 1188.40 1190.00

Table 3. Two-wedge anchor solutions for the case q = 5 kN/m2, and H = 5m, using material properties from

Table 1. Fprev are values computed using the approach of Fraldi & Guarracino (2009), for the non-linear soils

and using equation (6) for the linear soils.

To illustrate the general behaviour, first a solution where all four parameters θ1, θ2, ψs1 and ψs2 are241

fixed is shown in Fig. 7. Solutions were then investigated where the solution was optimised for all four242

parameters. However, it was found that the optimal solution was always that for which θ2+ψs2 = π/2,243

independent of the values of θ1 and ψs1 as shown in Table 3 for each of the soil types in Table 1. From244

the hodograph in Fig. 1, v1 must be zero if θ2 + ψs2 = π/2 and θ1 − ψs1 can take on any value. This245

agrees well with the linear case (e.g. Murray & Geddes 1987). There are no known non-linear lower246

bound solutions to the anchor problem. A linear lower bound solution was derived by Smith (1998)247

and gives an almost identical answer as the upper bound result in equation (6).248
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An illustration of the variation of the results for fixed θ1 = 63.43o and ψs1 = 20.0o with θ2 and249

ψs2 allowed to vary, are shown graphically in Fig. 8 for the fractured rock case and shows there is one250

minimum solution. In Fig. 8 the magenta dot represents the solution for θ2 = 50o and ψs2 = 25o for251

fixed θ1 = 63.43o and ψs1 = 20.0o corresponding to the mechanism in Fig. 7.252

Fig. 7. Example results of non-linear analysis showing mechanism and hodograph for two-wedge anchor embed-

ded in fractured rock (properties given in Table 1) with q = 5 kN/m2 and H = 5m. The active curves were

selected to meet at the surface on the symmetry line and use a specified dilation angle: θ1 = 63.43o, ψs1 = 20o.

The passive curve used values θ2 = 50o and ψs2 = 25o. The predicted upper bound load F = 2323.0 kN/m2.

7. Discussion253

The above examples clearly illustrate how the method may be applied to a general multiple-wedge254

rigid-block analysis, giving it a very broad applicability, and has verified it against lower bound and255

other solutions in the literature. Essentially the method replicates the nature of a conventional linear256

soil analysis, but doubles the number of variables to be optimised (slip-line orientation and equivalent257

dilation on the slip-line), in cases where optimization is required. The examples shown which were258

of a smooth retaining wall and anchor uplift display similar characteristics as for their linear coun-259

terparts.The optimal smooth retaining wall single line upper bound solution is very close to the true260

solution, and the optimal two-wedge anchor solution reduces to a single wedge solution.261

The approach presented in this paper determined the optimal upper bound by full application of the262

conventional energy minimisation approach. This is in contrast to some previous authors e.g. Fraldi &263

Guarracino (2009, 2010, 2011), Yang & Huang (2011), Zhang & Yang (2018)) who adopted a partial264

optimization of energy minimisation to obtain a variational form of the slip-line but then used a stress265

boundary condition at the soil surface to complete the solution. This assumed that the slip-line had to266

meet the (horizontal) surface at an angle consistent with a simple active or passive Rankine stress state267

at the surface. Solutions invoking such a boundary condition are still valid upper bounds, but were268

found to give collapse loads approx 0.3% higher than the full minimization approach as used in this269

paper as shown in Table 3. While this boundary condition assumption may be valid for the smooth270

retaining wall problem, it does not hold universally. In reality it is expected that the anchor/trapdoor271
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stress field would involve a singularity at the point where the slip-line meets the surface with rotations272

of the principle stress directions around this point as demonstrated by Smith (1998) for the linear soil273

case.274

The solution also assumed that the shape of the non-linear slip-line could be described by a function275

y = f(x). This assumption gives a relatively simple solution. There may be scope to achieve higher276

degrees of freedom in the solutions by adopting a parametric curve fp(x, y) = 0, however this is277

beyond the scope of the present work.278

One intriguing aspect of the analysis as pointed out by Baker & Frydman (1983) and Chen (1975)279

is that the upper bound solution not only identifies the slip-line geometry, but also part of the stress280

state at every point along the line, using equation (14) and equation (8), since each point has a unique281

gradient. It is thus possible to plot the shear stress and/or normal stress on the line with depth as282

shown in Fig. 9 and Fig. 10. For the active and passive walls, these values match reasonably closely283

to the values predicted by the lower bound approach (as would be expected). Note that the plotted284

lower bound values are those corresponding to the yield condition predicted by the lower bound at the285

relevant depth.286

For the anchor, the normal stress follows a value σn =∼ 1.0γz. This is consistent with the order of287

magnitude of values found in the stress rotation model of Smith (1998) for an anchor in a linear soil.288

While the optimal mechanism is expected to involve multiple slip-lines, the single slip-line solution is289

expected to be close to optimal, in a similar way to the linear soil case, and the corresponding stress290

state is expected to be close to the true solution result, but not exact. This example clearly shows that291

the predicted stresses are of the order expected and may be valuable in identifying the nature of lower292

bound solutions, or stresses acting on structures. Further work, however, is required in this area.293

Fig. 9. Predicted upper bound (UB) and lower bound (LB) normalised normal and shear stresses for anchor

(q = 0kN/m2 and H = 5m) and active and passive retaining wall cases (q = 5kN/m2 and H = 5m): loose sand

case. Wall UB and LB solutions are coincident.

Finally while the work here has been presented in the context of a classical hand calculation with294

simple optimization of a few variables, it should be possible to incorporate the approach into the much295

more general computational rigid block analysis approach Discontinuity Layout Optimization (Smith296

& Gilbert 2007) to produce solutions of high accuracy and to also extend the approach to cover rota-297

tional mechanisms in addition to translational mechanisms.298
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Fig. 10. Predicted upper bound (UB) and lower bound (LB) normalised normal stresses for anchor (q = 0kN/m2

and H = 5m) and active and passive retaining wall cases (q = 5kN/m2 and H = 5m): fractured rock case (NB

no lower bound anchor solution is available for this case).

8. Conclusions299

1. A fully general variational approach for the upper bound analysis of geotechnical collapse mech-300

anisms in non-linear soils has been presented. The analysis follows the form of the classic upper301

bound multi-wedge analysis utilised for linear soils. It is based on the use of closed form equa-302

tions and only requires the numerical solution of a single implicit equation in one variable.303

2. The approach presented has significantly extended a methodology developed previously for the304

special case of deep tunnels and the anchor/trapdoor problem, and used full energy optimisation305

of the solution, rather than adopting a special boundary condition.306

3. Application of the method to the analysis of active and passive earth pressures acting on a smooth307

retaining wall, demonstrated that the single wedge solutions obtained gave results very close to308

a simple lower bound analysis and thus established a close bracket to the true plastic solution for309

this case.310

4. A further example addressing the anchor uplift problem demonstrated the solution process for311

multi-wedges and showed that the solution behaviour follows a similar pattern to that for linear312

soils. More accurate solutions for this problem were obtained compared to previous work in the313

literature.314

5. Due to the non-linearity of the yield surface, for the simple types of solution utilised here, it315

is possible to determine the normal and shear stresses at any point on the slip-line. This is not316

normally available for upper bound problems. The validity of these stresses has been investigated317

and show strong consistency with related lower bound solutions, but further work is required in318

this area to establish the validity of the values generated.319
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Appendix A: Non-linear approximation of a linear yield function371

For validation purposes and also in order to access the stress values along a slip-line, it is useful to372

use the non-linear model described to represent a linear system by adopting a value of m very close to373

1.0. The accuracy of this approximation can be calculated as follows:374

Taking a = 0 for simplicity, the following can be written375

[41] τ = c0(σn/σt)
1/m

Let this equation and the linear form τ = c0l(σn/σt) intersect at the origin and when σn = σn1.376

This defines the range of the approximation. Thus377

[42] c0l = c0(σn1/σt)
(1−m)/m

The difference between the linear and non-linear curves at any value of σn, as a proportion of the378

intersection value at σn1 is given by:379

[43]
c0(σn/σt)

1/m − c0l(σn/σt)

c0(σn1/σt)1/m

A plot of this function shows that this has a maximum at around 0.4σ̄ and is approximately equal380

to 0.37 × (m− 1) for small m− 1.381

Appendix B: Lower bound solution for a smooth retaining wall382

For a smooth wall with vertical soil/wall interface, the same simple stress state configuration may383

be used for a non-linear soil as for a linear soil, namely the assumption that principal stresses are384

horizontal and vertical. The vertical stresses may thus be predicted by the following simple equation:385

[44] σv = q + γz

where q is the surface surcharge and z is the depth below the surface. Hence drawing the largest or386

smallest Mohr’s circle through this point that touches the non-linear yield surface will determine the387

passive and active lateral earth pressures respectively. Depending on the nature of the yield surface, the388

circle may be limited by a tangent to the main curve, or by the apex of the yield surface when τ = 0.389

Given that:390

[45] τ = c0(a+ σn/σt)
1/m

the lowest value of σn is when τ = 0:391

[46] σn,min = −aσt

At any point the gradient is given by:392

[47] tanψt =
dτ

dσn
=

c0
mσt

(a+ σn/σt)
(1−m)/m
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Referring to Fig. 11,393

[48] s− σn = τ tanψt =
c20
mσt

(a+ σn/σt)
(2−m)/m

[49] s = σn +
c20
mσt

(a+ σn/σt)
(2−m)/m

[50]
ds

dσn
= 1 +

(2 −m)c20
m2σ2

t

(a+ σn/σt)
(2−2m)/m

This is always positive if m < 2 and indicates a switch of sign at:394

[51] (a+ σn/σt) =

(

(m− 2)c20
m2σ2

t

)

m

2(m−1)

[52] σn0 = σt

(

−a+

(

(m− 2)c20
m2σ2

t

)

m

2(m−1)

)

Which corresponds to a value of s at:395

[53] s0 = σn0 +
c20
mσt

(

(m− 2)c20
m2σ2

t

)

2−m

2(m−1)

It is thus necessary to work with Mohr’s circles from s = 0 to s0 that touch σn,min. Above s0 the396

circles are tangential to the yield surface (as shown in Fig. 11) and of radius t given as follows:397

[54] t =
√

τ2 + (s− σ)2 = τ

√

1 + tan2 φ = τ sec2 φ

For active conditions398

[55] σv = s+ t

[56] σh = s− t

For passive conditions399

[57] σv = s− t

[58] σh = s+ t
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Fig. 11. Mohr’s circle for non-linear yield surface, c0 = 5, a = 2.5, σt = 1.0/ tan(30), m = 1.5.
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