
This is a repository copy of Scalable Contour Tree Computation by Data Parallel Peak 
Pruning.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/151668/

Version: Accepted Version

Article:

Carr, HA orcid.org/0000-0001-6739-0283, Weber, GH, Sewell, CM et al. (3 more authors) 
(2021) Scalable Contour Tree Computation by Data Parallel Peak Pruning. IEEE 
Transactions on Visualization and Computer Graphics, 27 (4). pp. 2437-2454. ISSN 1077-
2626 

https://doi.org/10.1109/TVCG.2019.2948616

Protected by copyright. Personal use of this material is permitted. Permission from IEEE 
must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Scalable Contour Tree Computation by Data Parallel Peak Pruning

Hamish A. Carr, Gunther H. Weber, Christopher M. Sewell, Oliver Rübel, Patricia Fasel, James P. Ahrens

Abstract— As data sets grow to exascale, automated data analysis and visualization are increasingly important, to intermediate
human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance
computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed
systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features
of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and
founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour
tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on
performance allied with fast practical performance. We report the first shared SMP algorithm for fully parallel contour tree computation,
with formal guarantees of O(lgV lg t) parallel steps and O(V lgV ) work for data with V samples and t contour tree supernodes, and
implementations with more than 30× parallel speed up on both CPU using TBB and GPU using Thrust and up 70× speed up compared
to the serial sweep and merge algorithm.

Index Terms—topological analysis, contour tree, merge tree, data parallel algorithms

1 INTRODUCTION

Modern computational science and engineering depend heavily on
ever-larger simulations of physical phenomena. These simulations
are a major driver for hardware advances, and have led to clusters
with hundreds of thousands of cores, petaflops of performance and
petabytes of data storage, with exaflop performance predictable within
the next seven to nine years. For recent hardware, the I/O cost of
data storage and movement dominates, and increasingly requires in
situ data analysis and visualization, making algorithms which iden-
tify key features such as contours during the simulation and store only
features to disk rather than the full data more appealing.

In situ analysis and visualization require analytic tools to identify
relevant features for further analysis and/or output to disk. This has
stimulated research into areas such as computational topology, which
constructs models of the mathematical structure of the data for anal-
ysis and visualization. One of the principal mathematical tools is the
contour tree or Reeb graph, which summarizes the development of
contours in the data set as the isovalue varies. Since contours occur in
many visualizations, the contour tree and the related merge tree are of
prime interest in automated analysis of massive data sets.

The value of these computations has been limited by available algo-
rithms, and the goal of this paper is to give a data parallel, shared mem-
ory algorithm for contour tree computation. This goal is motivated by
the increased per-node parallelism of modern computing architectures.
Multi-core accelerator boards, such as NVIDIA GPU and Intel Xeon
Phi increasingly provide data parallel compute power to personal work
stations as well as supercomputers like Titan at the Oak Ridge Lead-
ership Facility (NVIDIA Kepler), Trinity at the Los Alamos National
Laboratory & Sandia National Laboratories (Intel Xeon Phi) and Cori
at the National Energy Research Scientific Computing Center (Intel
Xeon Phi). Furthermore, high performance computing already uses
hybrid shared-memory/distributed memory architectures with 16 or

• Hamish A. Carr is with the University of Leeds, United Kingdom. E-mail:

H.Carr@leeds.ac.uk.

• Gunther H. Weber and Oliver Rübel are with the Computational Research

Division, Lawrence Berkeley National Laboratory, Berkeley, California,

United States. E-mail: {GHWeber, ORuebel}@lbl.gov.

• Gunther H. Weber is with the Department of Computer Science, University

of California, Davis, California, United States.

• Christopher M. Sewell, Patricia Fasel, and James P. Ahrens are with the

Los Alamos National Laboratory, Los Alamos, New Mexico, United States.

E-mail: {csewell,pkf,ahrens}@lanl.gov.

Mansucript received 24 July 2018; revised 12 February 2019; revised 10 June

2019.

more cores per compute node with high-speed interconnect. Finally,
machines like Silicon Graphics UV racks make it feasible to have up
to 512 processors and 4TB of RAM in a shared memory space, using
OpenMP as the programming paradigm, while NVIDIA’s Tesla V100
cards have up to 5120 cores and 16GB of VRAM. Problem sizes of
> 1,000,000,000 data values however mean that each core can be ex-
pected to process many vertices. The effective model of parallelism
is thus CRCW—concurrent read, concurrent write, with no guarantees
on write order. Moreover, although parallel algorithmic efficiency is
crucial, the total work to be performed also matters.

These factors make efficient data parallel contour tree algorithms
desirable, but existing approaches are largely serial or distributed.
While there is a well-established algorithm [9] for merge trees and
contour trees, the picture is patchier for distributed and data-parallel
algorithms. Although some approaches exist, they either target a dis-
tributed model [1], or have serial sections [27], do not come with
strong formal guarantees on performance, or do not report methods for
augmenting the contour tree with regular vertices, which is required
for secondary computations such as geometric measures [10].

Developing a new algorithm for data parallel contour tree calcula-
tion requires reformulating the problem for parallelism. Our new ap-
proach builds on the two phases of Carr et al. [9] of computing merge
trees (join & split tree) and combining them into a contour tree. To
parallelize merge tree calculation, we replace the union-find based ap-
proach with a new algorithm that constructs monotone paths from sad-
dles to extrema then iteratively “prunes” peaks, i.e., cuts off merge tree
branches ending in an extremum (Section 4). Many extrema can be
“pruned” simultaneously, making this approach easily parallelizable.

Once join and split trees are computed, we combine them into the
contour tree. While the original algorithm [9] uses priority queues to
serialize transferring arcs from join and split tree into the contour tree,
these operations are not inherently serial, and, with some extensions
to the algorithm, we can perform them in parallel.

While this approach is inherently parallel, a naı̈ve implementation
is slow, and we spent considerable effort in optimizing not only the
formal analysis but the practical efficiency. As a result, while it is pos-
sible to compute the fully augmented contour tree with our algorithm
by treating every node as a critical point, we concentrate on computing
the unaugmented contour tree in this paper for reasons of speed.

We review previous work (Section 2), then add some new terminol-
ogy (Section 3). Since the merge trees are a precursor to contour trees,
we report our parallel peak-pruning (PPP) algorithm for merge trees
first in a simple naı̈ve form (Section 4), then in a developed form with
a number of significant optimizations (Section 5). We then extend the
approach to 3D simplicial meshes and cubic (MC) meshes in Section
7, and describe a parallel algorithm for contour tree computation from
merge trees (Section 6), finishing with performance results (Section 8)



and our conclusions (Section 9).

2 BACKGROUND

Since the goal of this work is to use data-parallel computation to con-
struct an algorithm for contour tree computation, we split relevant
prior work between data-parallel computation (Section 2.1) and con-
tour tree computation (Section 2.2). This divide is not strict, since
some work has been published on distributed and parallel contour tree
computation, but is convenient for the sake of clarity.

2.1 Data-Parallel Computation

Data-parallelism exploits the shared-memory parallelism on accelera-
tors such as GPUs and multi-core CPUs. Blelloch [3] defined a scan
vector model and showed that many algorithms can be implemented
using a small set of “primitives”—such as transform, reduce, and
scan—which can be implemented in a constant or logarithmic num-
ber of parallel steps. NVIDIA’s open-source Thrust library provides
an STL-like interface for such primitive operators, with backends for
CUDA, OpenMP, Intel TBB, and serial STL. An algorithm written us-
ing this model can utilize this abstraction to run portably across all
supported multi-core and many-core backends, with the architecture-
specific optimizations isolated to the implementations of the data-
parallel primitives in the backends.

PISTON [25] and VTK-m use Thrust for algorithms such as iso-
surfaces, cut surfaces, thresholds, Kd-trees [36] and halo finders [20].
Halo finding [20, 35] makes use of a data-parallel union-find algo-
rithm, which most contour tree algorithms depend on.

We will also rely on a technique known as “pointer-jumping,” which
is used to find the root of each node in a forest of directed trees [23].
In this approach, the successor for each node is initialized to be its
parent: thereafter, the successor of the node is updated to the succes-
sor’s successor in each iteration. After at most logarithmic iterations,
all vertices are guaranteed to point to the root of their forest.

2.2 Contour Trees

Given a function f : Rd →R, a level set—usually termed isosurface in
scientific visualization—is the inverse image f−1(h) of an isovalue h,
and a contour is a single connected component of a level set. The Reeb
graph is obtained by contracting each contour to a single point [34],
and is well defined for Euclidean spaces or for general manifolds. The
number and, in three dimensions, the genus of contours changes only
at isolated critical points. Critical points where the number of con-
tours changes appear as nodes in the Reeb graph, while critical points
where only the genus changes do not. For simple domains, the graph
is guaranteed to be a tree, and is called the contour tree.

The structure of the contour tree emphasizes the critical points at
which topological change occurs: these are called supernodes, and the
edges between them superarcs. Note that while all supernodes are
critical points, the reverse is not true, as in the case of critical points
where the genus changes but the number of connected components
does not. For clarity, critical point should only be used to refer to a
point in the original domain, while supernode should be used to refer
to the corresponding vertex in the contour tree.

Strictly speaking, the supernode corresponds not to the critical point
itself, but rather to the critical contour, i.e. the contour passing through
the critical point. Each superarc is then the class of contours lying be-
tween the critical contours for the supernodes at the ends of the super-
arc. A single contour at isovalue h is then represented by the point on
the corresponding superarc with the same isovalue h. For many pur-
poses, the contour tree is then augmented with additional nodes along
the superarc, most commonly the vertices in the original mesh. This is
significant for data analysis and visualization, as it permits annotation
of the tree with additional geometric information.

The contour tree abstracts isosurface behavior, as seen in Figure
1. By contracting contours to single points, it indexes all possible
contours. If the contour tree is laid out so that the y-coordinates cor-
respond to function value (Figure 1), a horizontal cut intersects one
edge of the contour tree per connected isosurface component at the
corresponding isovalue. We show three such cuts: orange at 6.5 (two

contours), cyan at 11.5 (three contours) and blue at 21.25 (4 contours).
This property was exploited in one of the early visualization applica-
tions: accelerated extraction by generating seed cells for isosurface
extraction by contour following [39, 40].

As well as relating contours and critical points, contour trees also
allow assigning importance to features [10] and ignoring features be-
low an importance threshold. Features are defined by pairs of critical
points, usually an extremum-saddle pair. The most common pairing is
the branch decomposition of Pascucci et al. [32], which is very sim-
ilar to the topological persistence [15] used in persistent homology,
although only identical [22] for join and split trees, not for contour
trees. We therefore use the language of branch decomposition rather
than topological persistence.

We illustrate a small data set, the corresponding join, split and con-
tour trees, and the branch decomposition in Figure 1. At saddle 15,
peaks 24 and 22 meet, and we pair one with 15: the choice is based
on isovalues or geometric properties [10]. Here, peak 24 has a higher
value (24−15 = 9) than peak 22 does (22−15 = 7), so 22 pairs with
15 and is subordinate to peak 24. 24 is now a single peak with saddle
at 10: this pair has a wider range of values than peak 13 and saddle 10
(13−10 < 24−10), so peak 24 is paired with the minimum at 0.

This process, applied to all critical points, results in the hierarchi-
cal branch decomposition shown in Figure 1(d). Simplification of the
tree then consists of cancelling the extremum with the saddle, e.g. by
“flattening” it, chopping off the peak or “filling in” the valley.

For data analysis, we assume the domain is a mesh—i.e., a tessel-

lated subvolume of Rd , as used for numerical simulation. For simpli-
cial meshes, all critical points of the function are guaranteed to be at
vertices of the mesh [2], simplifying topological computations.

We will refer to the number of vertices in a graph as V and the
number of edges as E, and note that pathological tetrahedral meshes
may have E = Θ(V 2). For regular meshes (our principal targets at
present), V = Θ(E). In all practical cases, however, V < E.

2.2.1 Sweep And Merge Algorithm for Contour Trees

For simplicial meshes on simple domains, the sweep and merge al-
gorithm [9] incrementally adds vertices in sorted order to a union-
find data structure [38]. As components are created or merged in the
union-find, critical points are identified, and a partial contour tree is
created, called a merge tree. After performing ascending and descend-
ing sweeps, the two resultant merge trees, known as the join and split
trees are combined to produce the contour tree. The conference and
journal versions flipped the meaning of “join” and “split”, which led
to some confusion. We will follow the journal version, and use “join”
for a saddle where peaks meet and “split” for a saddle where pits meet.

2.2.2 Topology Graph

For a simplicial mesh, the contour tree is normally computed by tak-
ing the edges of a triangulated mesh as the input to a graph-based
algorithm (see below for details). However, while this is a sufficient
input, it is not necessary, and may cause unnecessary workload. Carr
& Snoeyink [8] abstracted this to a topology graph, in which all crit-
ical points must be represented, along with a set of edges that can
represent any critical path through the underlying scalar field. More-
over, one can use separate topology graphs to compute the join and
split trees, in which case we may refer to them as join and split graphs.
This approach is also visible in other algorithms [37, 13, 27], and is
essential to the performance of our new approach.

2.2.3 Scaling Sweep and Merge

While the sweep and merge algorithm is simple and efficient, it uses
a sequential sweep through the contours, hindering the development
of parallel algorithms. Pascucci & Cole-McLaughlin [31] described a
distributed method that divides the data into spatial blocks, computes
the contour tree separately for each block and combines the contour
trees of individual blocks in a fan-in process combined until a single
master node holds the entire contour tree.

Similarly, Acharya & Natarajan [1] computed the contour tree by
splitting the data into blocks and combining the resulting local trees.



(a)

24

15

22

10

13

0

(b)

24

15

10

1

8

0

(c)

24

15

22

10

1

13

8

0

6.5

11.5

21.25

(d)

Fig. 1: (a) shows a small triangulated mesh as a landscape, with some selected isolines shown. (b) shows the corresponding join tree, which
captures the connectivity of the super-level sets (regions above a given value). Cancellation pairs under topological persistence are indicated
by line color and width, and are equivalent to branch decomposition. (c) shows the corresponding split tree with cancellation pairs. (d) shows
the contour tree, which captures the connectivity of the contours in mesh (a) - for example, the isolines shown in (a) are marked as augmenting
nodes in the tree. The branch decomposition of the contour tree, which provides a hierarchy for data simplification, is indicated by line color
and width, but is not always identical to cancellation under topological persistence.

Within each block, their algorithm identifies critical points, and con-
structs monotone paths from saddles to extrema to build topology
graphs, following Chiang et al. [13]. Once this is done, they stitch
together the join & split trees for the blocks, to produce join & split
graphs for computing the global contour tree.

In practice, contour trees have a significant memory footprint, and,
for noisy or complex data set, their size is nearly linear in input size,
which forces the contour tree for the entire data set to reside on the
master node, defeating one of the purposes of parallelization: distribu-
tion of cost both in computation and in storage.

More recently, Morozov & Weber [29] distributed a merge tree
computation by observing that each vertex in the mesh belongs to
a unique component based at a single root maximum, and to a cor-
responding component at a minimum. Thus, by storing the location
of each vertex in a merge tree, the merge tree is held implicitly, dis-
tributed across the nodes of the computation. They then generalized
this further [30] and stored unique maximal and minimal roots for each
vertex. Since this combination is unique for each edge of the contour
tree, the contour tree is stored implicitly across a cluster. These algo-
rithms focus on distributed computing but not data-parallelism, limit-
ing efficient utilization of individual compute nodes.

Landge et al. [24] used segmented merge trees to segment data and
identify threshold-based features. They constructed local merge trees
and corrected them based on neighboring domains. By considering
features only up to a predefined size, this correction process requires
less communication than the approach by Morozov & Weber [29].

Related to this, Widanagamaachchi et al. [41] described a data-
parallel model for the merge tree, breaking the computation into a
finite number of fan-in stages. This approach in effect quantized the
merge tree, an effect that was acceptable for the task in hand.

The hybrid GPU-CPU algorithm by Maadasamy et al. [27] finds
critical points then monotone paths [13] from saddles to extrema, to
build join & split graphs to identify equivalence classes of vertices
that share a set of accessible extrema to compute the merge trees.

Once the merge trees are computed, the computation continues in
serial on the CPU, using the merge phase of Carr et al. [9]. Where E ≪

V , this is practical, but as shown by Carr et al. [10], there are classes of
data (principally empirical) for which E ≈V . Moreover, even the GPU
phase is not pure data-parallel, as the search from saddles to extrema
is serial for each vertex, and the number of steps needed is bounded
by the longest such path in the mesh. Although this tends to average
out over a large number of vertices, it limits the formal guarantees
on performance. Lastly, this algorithm computes the unaugmented
contour tree, limiting the forms of analysis that are feasible.

Some of the work on Reeb graph and higher-dimensional topologi-
cal computation is also relevant. In particular, Hilaga et al. [21] quan-
tized the range of the function, explicitly dividing an input mesh into
slabs—i.e., the inverse image of intervals rather than of single iso-
values. They then identified the neighborhood relationships between
these slabs to approximate the Reeb graph of a 2-manifold. More
recently, Carr & Duke [5] generalized this with the Joint Contour
Net—which approximates the Reeb space [14] for higher dimensional
cases—by quantizing all variables in the range.

Based on quantized Joint Contour Net computation, Carr et al. [7]
used Reeb’s characterization to contract contours to points. They
achived data-parallel computation by using explicit quantization to
break cells into fragments representing fat contours as in the work on
Joint Contour Nets [5], then used the parallel union-find algorithm of
Sewell et al. [35] to collapse the contours nodes in the quantized con-
tour tree. A second union-find pass then constructed superarcs out of
the nodes. However, this was profligate of memory, and processed c.
1M samples on a single Tesla K40 card, with a memory footprint even
larger than the sweep and merge algorithm.

In contrast, Gueunet et al.[17, 18] employ task-based parallelism in
shared memory to work around the serial sweep, first by computing
separate contour trees for subranges of the scalar value [17], then by
a task-based algorithm that decouples the sweep for separate peaks,
with a common pool of small sweeps shared by all threads [18].

3 NEW TERMINOLOGY

We start by introducing two new terms that will help us build our al-
gorithm: governing saddles, and pseudo-extrema. The motivation for
this is that the new algorithm does not rely on cancelling critical points
in the same way as previous work. New terminology was therefore in-
evitable, but we have tried to limit the number of new terms, which we
describe in the following subsections.

3.1 Governing Saddles

Previous simplifications pair peaks with saddles to build a hierarchy.
Instead, we allow multiple peaks to pair with one saddle. We therefore
define the governing saddle for a peak to be the highest point from
which monotone paths exist to that peak and at least one other: such a
point will always be a saddle point. Moreover, where a Y-structure is
broken into one long and one short edge in branch decomposition, we
break it into two short branches and a residuum. Inversely, the gov-
erning saddle of a minimum is the lowest point from which monotone
paths exist to the minimum and at least one other.



In Figure 1, we also show the decomposition of the join and split
trees based on governing saddles. For example, 15 is the governing
saddle for both 24 and 22, and 10 is the governing saddle for both 13
and 15—i.e. we can assign governing saddles to saddles themselves.

3.2 Pseudo-Extrema

During this process, we prune peaks to their governing saddles, and
will often prune all peaks sharing a governing saddle at once. In
this case, the saddle will effectively become a peak in its own right.
This can be handled mathematically by contracting the region for the
peak, by excerpting the peak from the domain, or by operations on the
mesh [4]. We refer to such saddles as pseudo-extrema in order to make
it clear that a vertex currently being treated as an extremum may be a
saddle in the original data. We will see later that not all saddles are
pseudo-extrema: hence the introduction of a separate term.

One reason for this choice is that pair cancellation is a serial pro-
cess, proven by linear induction. For parallelism, we want properties
that are not defined by simple linear induction, preferring rather to use
properties that reduce problem size by many elements at once.

Moreover, saddles at one iteration may become regular points at a
later iteration. Where needed, we will refer to these as pseudo-regular
points, but we will not rely as heavily on them as the pseudo-extrema.

In the base case, all saddles will have been pruned down to pseudo-
regular points except the global maximum, and we will refer to the
resulting structure as the trunk of the tree.

In branch decomposition or simplification, this equates to choosing
the vertex depth in the tree as an importance measure, then batching
simplification and degree 2 vertex reduction.

4 PARALLEL PEAK PRUNING FOR MERGE TREES

Our new algorithm, Parallel Peak Pruning (PPP), is fully data-parallel
and computes both merge and contour trees. Since the join tree and
split tree computations are symmetric in nature, we describe and il-
lustrate the algorithm for the join tree only. At heart, our algorithm is
similar to simplifying a contour tree: we identify peaks and find their
governing saddles to establish superarcs in the join tree, then delete
(prune) the regions defined by each peak/saddle pair, and process the
remaining data recursively. When only one peak remains, there is no
saddle, and all remaining vertices form the “trunk” of the tree.

Since the details are somewhat complex after optimization, we will
build it in several stages:

S. 4 Parallel Peak Pruning to Construct Merge Trees

S. 5 Optimising Parallel Peak Pruning

S. 6 Parallel Combination of Merge Trees

We assume that the input is a triangulated mesh in 2D, and reduce
it to the edge graph of the mesh, as we know that this is sufficient to
compute the join tree [8]. We will see in Section 7 how to extend the
current work to other mesh types, but defer details until then.

We start with all data values sorted using simulation of simplic-
ity [16] and assign a unique sorting index which we then use through-
out for comparisons. This simplifies the code significantly and reduces
memory access, at the cost of an initial sort over all data values.

The parallel peak pruning algorithm then operates as follows:

1. Iterate Until No Saddles Remain:

(a) Monotone Path Construction: from vertices to peaks

(b) Peak Pruning: to governing saddles

2. Trunk Construction: from remaining vertices

3. Join Arc Construction: along superarcs

Ascent
Chosen

Mesh 
Edge

24

22

21

15 10 13

0

8

120 14 6

23 18 12 7 3

17 9

4 5 11

2 16 19

Ascent Loopback
at Peak

Fig. 2: Selection of Initial Ascending Edge

Monotone Path Construction: In this phase, we build one mono-
tone path from each vertex to a peak. No canonicity is assumed, as any
peak reachable from the vertex can be chosen. The simplest way is to
choose the first ascending edge from each vertex, except for peaks, as
shown in Figure 2. Since every edge points to a higher vertex (ex-
cept at peaks), we have no cycles, and the directed graph is therefore
a forest. In this forest, each tree consists of a set of vertices which are
guaranteed to have a monotone path to the peak at the root of the tree.
We then set each peak to point to itself to simplify the computation.

Since the trees are connected components of the forest, we use
pointer-doubling [23] to collect the trees, as shown in Figure 3. In
each iteration, each vertex points to its ascending neighbor’s neighbor,
terminating at the peak. At the end of this process, every vertex has
been assigned to a peak, shown by the coloured groups: the colour
attests to the existence of a monotone path from the vertex to the peak.

Peak Pruning: In the second phase, we identify the governing sad-
dles for each peak. Recall from Section 3 that the governing saddle
g of a peak p is the highest saddle from which a monotone path to
p exists. Since identifying saddles accurately is more difficult than it
might seem, we define a saddle candidate to be a vertex which has as-
cending edges whose upper ends are labelled with at least two peaks:
i.e. vertices in Figure 4 with ascending edges in two different colours.
Every saddle is guaranteed to be a saddle candidate, but not vice versa:
for example, vertex 5 is a saddle candidate but not a saddle.

A saddle candidate c from which a path ascends to peak p cannot
be higher than the governing saddle g for the peak, as otherwise c
would govern. It then follows that the governing saddle is the highest
saddle candidate from which a monotone path to p exists. This gives
a parallel test to find the governing saddles for all peaks. We simply
sort all of the edges ascending from saddle candidates by four criteria,
using either a single lexicographic sort or a sequence of stable sorts:

1. Whether the lower end is a saddle candidate

2. The peak ID assigned to the upper end

3. The ID of the lower end

4. The ID of the edge

The first of these criteria, illustrated in the first row of Figure 5 is
used to ignore all edges whose lower end is not a saddle candidate.
Alternately, these edges can be omitted from the sort, but the cost of
doing so in parallel is the same as sorting.

The second criterion sorts the edges into equivalence classes by
peak, illustrated by the colour in the second row of Figure 5, while
the third criterion ensures that an edge from the governing saddle is at
the beginning of the group, as shown by the boxes in Figure 5.

The fourth criterion is not needed, but forces a canonical order,
which makes debugging in parallel considerably easier.

After this sort, all edges leading to each peak p are clumped, with
the leftmost (highest) such edge adjacent to the end of the array or to an



24

22

21

15 10 13

0

8

120 14 6

23 18 12 7 3

17 9

4 5 11

2 16 19

24

22

21

15 10 13

0

8

120 14 6

23 18 12 7 3

17 9

4 5 11

2 16 19

24

22

21

15 10 13

0

8

120 14 6

23 18 12 7 3

17 9

4 5 11

2 16 19

AscentNodes Coloured 

By Peak
Ascent Loopback

at Peak

Fig. 3: Monotone Path Construction. 3 iterations are required.

edge leading to a different peak. This test for peak-saddle pairs is fully
parallelized over all edges: only the edge that satisfies the conditions is
allowed to assign the saddle s to the peak p, precluding write conflicts.

This process pairs critical points, but we must still process the regu-
lar points (which may previously have been critical points). We there-
fore exploit a simple property: any regular vertex above the governing
saddle s of a peak p can only have monotone paths to p, and can there-
fore be assigned to that peak, shown in Figure 6 by color-coding.

Once peak p and its regular vertices are found, they are no longer
needed. We will exploit this later, but for now, once a vertex has a peak
assigned, it is ignored. This can be achieved if each vertex checks to
see whether it has a peak assigned before it is considered in each pass:
in the sorting pass, we force all such vertices to sort high. However,
monotone ascents to vertices inside this region are still needed, which
is handled by redirecting any edge leading to a marked vertex to ascend
to the governing saddle, as shown in Figure 7.

Trunk Construction: In each pass, we prune all peaks, flattening
(or deleting them) to remove the region above the governing saddle.
Each governing saddle then becomes either a peak (e.g. 15 in our
example) or a regular point (e.g. 10 in our example). We recompute
monotone paths and iterate: Figure 8 illustrates the next iteration for

Nodes Coloured 

By Peak

Edges Coloured 

By Peak
Saddle Candidates 

in Bold

24

22

21

15 10 13

0

8

120 14 6

23 18 12 7 3

17 9

4 5 11

2 16 19

Fig. 4: Saddle Candidate Identification. Edges are assigned to the
same peak as their upper end. Any vertex whose edges lead to multiple
peaks is a saddle candidate.

our example. Here, there is only one peak left at 15 and no saddles, so
we have hit the base case and can assign all remaining vertices to the
trunk which leads downwards from 15 to a virtual saddle at −∞.

Regular Arc Connection: One final step remains: to compute join
arcs connecting the vertices together in the fully-augmented join tree.
Observe that each vertex points to the next highest vertex on the same
peak: we construct this by sorting first on the peak ID, then the vertex
value, as shown in Figure 9. Each vertex then points to its right-hand
neighbor, unless this belongs to a different peak, in which case the
vertex points to the governing saddle of the peak.

We note that this does not give the join superarcs in the same form
as existing algorithms. To see this, consider Figure 9, which shows
the join arcs we have just computed. We extracted peak-saddle pairs
(24,15),(22,15),(13,10),(15,−∞): note that in the second pass, 10
was treated as a regular point, not a critical point.

4.1 Algorithmic Analysis of the Naı̈ve Algorithm

To analyse the performance of this naı̈ve algorithm, we first ask how
many iterations it will take to compute the entire merge tree. Notice
that in each iteration, all (upper) leaves are pruned as peaks simultane-
ously. We observe that, if a tree only has vertices of degree 1 (leaves,
or the global minimum) or > 3 (saddles), then at least half of the ver-
tices must be leaves. As long as each iteration removes all of them,
and preserves the degree condition, we are guaranteed to terminate in
at most O(lgV ) iterations, or more precisely, in O(lg t), where t is the
number of supernodes in the merge tree.

Pruning the upper leaves may result in a large number of internal
saddle points becoming regular points during the computation. This
is why we recompute the monotone paths to peaks in each pass: this
treats these points as regular points for the next iteration. As a result,
our invariant is preserved, and we take at most O(lg t) passes. In this
case, notice that we take exactly 2 passes for a tree of 28 nodes, so
O(lg t) is a loose bound in practice. Oddly, this difference is most
pronounced for unbalanced merge trees such as this example, and bal-
anced trees are tight to this bound. Thus, unlike many graph algo-
rithms, the more balanced the tree, the slower the computation!

Within each pass, assuming we carry all vertices forward as de-
scribed above, we will perform O(V lgV ) work in O(lgV ) steps to
recompute the monotone paths, followed by O(E lgE) work in O(E)
steps to sort the E edges. Identifying this iteration’s peaks then takes
O(E) work in O(1) steps, while assignment of regular vertices to peaks
takes O(N) work in O(1) steps.

Finally, in the base case, construction of the trunk takes O(V ) work
in O(1) steps, while the final join arc construction requires a sort in
O(V lgV ) work and O(lgV ) steps followed by O(V ) work in O(1)
steps to connect the join arcs together. If the superarcs are to be con-
structed as well, then a similar sort of the supernodes along the peaks
can be performed in O(t lg t) work in O(1) time.



From Saddle Candidate 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Peak for Upper End 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 22 22 22 22 22 22 22 22 22 13 13 13 13

Lower End 15 11 10 10 8 7 7 7 5 5 5 3 3 2 2 15 11 11 11 10 8 8 5 2 10 8 7 3

From Saddle Candidate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Peak for Upper End 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 22 22 22 22

Lower End 23 20 18 18 18 17 14 12 12 12 12 9 9 9 9 9 6 6 4 4 1 1 0 0 21 19 19 16

Fig. 5: Peak-Saddle Pairing. In the sorted array, edges from non-saddle candidates (grey) are ignored. Edges whose left neighbor has a different
peak identify the peak-saddle pairings (marked as a box).

24

22

21

15 10 13

0

8

120 14 6

23 18 12 7 3

17 9

4 5 11

2 16 19

Fig. 6: Assigning Regular Points. Since peak 24 has 15 as its govern-
ing saddle, vertices labelled 24 whose value is higher than 15 can now
be assigned to 24. Similarly, vertices 16,19,21 can be assigned to 22,
while no regular vertices labelled 13 lie above 10.

Overall, naı̈ve parallel peak pruning (PPP) takes O(E lgV lgE)
work in O(lgV lgE) steps. This is less efficient than sweep and merge,
so massive parallelism would be needed for practical gains. Initial
runs confirmed this, with computation times several orders of magni-
tude slower than sweep and merge. This led to consideration of the
trade-off between work and steps, and identification of bottlenecks.

5 OPTIMIZATION WITH ACTIVE TOPOLOGY GRAPHS

This algorithm is asymptotically efficient in parallel but slow empiri-
cally, with the most expensive routine being the sort, which had to sort
E edges per iteration. Ironically, we found ourselves bemoaning the
fact that we “only” had 3,000 processors on a GPU, and turned our at-
tention to optimising the work performed as well as the time required.

This sort is repeated in every iteration, carrying forward every ver-
tex and edge until the end of the computation. We therefore introduced
two fundamental optimizations, reducing the size of working arrays in
every iteration, and restricting the computation to the supernodes.

5.1 Active Working Graph

The first optimization we applied was to observe that, once a vertex has
been pruned, it can be dropped out of the arrays for subsequent itera-
tions. This adds an additional step at the end of the loop, compressing
the active working set of vertices and edges. Formally, this adds an
extra reduction to the iteration, but since we are sorting all edges any-
way, it does not increase the asymptotic cost. In practice, however, this
optimization alone improved runtimes by an order of magnitude, but
further analysis will be deferred until we have described the second
optimization: critical topology graphs.

22

21

15 10 13

0

8

120 14 6

23 18 12 7 3

17 9

4 5 11

2 16 19

24

Fig. 7: Peak Pruning. Edges leading up to pruned vertices are trun-
cated at the saddle’s isovalue, represented by redirecting them to the
saddle. Pruned vertices and looped edges are removed.

15 10

0

8

114 6

12 7 3

9

4 5 11

2

After Final Iteration

Fig. 8: Second Round of Monotone Path Construction. 15 is the last
peak, and we transfer all vertices to the trunk of the tree.

5.2 Critical Topology Graph

We saw in Section 2.2.2 that contour trees need not be computed from
the edges of the mesh: instead, it suffices to use a topology graph
capturing all monotone paths between critical points. We therefore
borrow from the work of Chiang et al. [13], and define a critical graph
on which the PPP algorithm is executed.

In this graph, the vertices are a superset of the critical points, de-
fined conservatively by the invariant that edges incident to join saddles
ascend to at least two different maxima during the initial peak-finding
routine. This is necessary but not sufficient, with no guarantee that
only critical points are selected. We use a simple local test based on
the link to consider only Morse critical points. In 2D, this allows us
to define bounds based on the size t of the contour tree, but in 3D and
higher the size t means the number of Morse critical points.



Peak 24 24 24 24 24 22 22 22 22 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 13

Vertex 24 23 20 18 17 22 21 19 16 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0 13

Join Neighbour 23 20 18 17 15 21 19 16 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 10

13

24 23 20 18 17 10 9 8 7 6 5 4 3 2 1 0

15 14 12 11

22 21 19 16

Fig. 9: Join Arc Construction. Each vertex points to the next lowest in its peak-saddle superarc. Each run of nodes along a superarc transfers as
a unit to the join tree (shown horizontally beneath)

To construct the critical graph, we identify a small superset of the
critical points, and a set of edges ascending from them to peaks [13].
The first task, critical point detection, looks at the link of each vertex
to detect criticality. In a triangulated mesh, any vertex whose link has
either zero or two or more connected components of neighbors with
higher values is a critical point, either a peak or a saddle. All such
vertices are put in the critical topology graph.

For each saddle u, we want an ascending edge for each upper link
component: we select one vertex v in each link arbitrarily. We then
extend this edge to a path to a peak for three reasons. First, v may not
be a critical point, but every peak is. Second, by extending the path to
a peak p, we satisfy the conditions necessary for the critical graph to
be a topology graph for contour tree computation [8].

We initialize the critical graph by computing paths from all vertices
in the mesh to a peak as in the naı̈ve algorithm. We then identify criti-
cal points with a conservative test: any vertex whose higher neighbors
belong to either zero peaks or more than one peak could be a saddle
point, while any vertex whose higher neighbors belong to exactly one
peak must be a regular point. Note that we could have an arbitrary
number of unnecessary points at this stage, and that this will compli-
cate formal analysis. For each such vertex u transferred to the critical
graph, we choose at least one neighbor v per upper link component
and follow to its peak p = peak(u), then add (u, p) to the active graph.

This neighborhood examination can be done in several ways. First,
we can sort to find equivalence classes of upper link components, as
with the naı̈ve algorithm. Second, in 2D we can iterate around the link,
counting sign changes along the way. Third, we can use union-find on
the link of u. And last, for regular lattices, we can compute bitflags for
the sign of each neighbor, then use a lookup table.

Clearly, which choice we make here will have a significant impact
on performance, but none of them alter the algorithmic analysis, since
we cannot guarantee how many vertices will be transferred to the ac-
tive graph. In practice, however, this step typically reduces the graph
size by at least one order of magnitude, reducing practical run times
accordingly. Moreover, the cost of constructing the active graph is
at worst n lg(n) work in lg(n) time, the same as the initial pointer-
doubling computation of paths from every vertex to peaks.

5.2.1 Active Graph Peak Pruning

After computing the critical graph, we run the PPP algorithm. In
each pass, pseudo-extrema are pruned to saddles. Regular and pseudo-
regular points are assigned to pseudo-extrema and also pruned. Ver-
tices are only labelled as supernodes when a superarc begins or ends
at them. As a result, any regular point included in the critical graph by
our conservative test is left unlabelled.

In the ideal case, our active graph would consist only of the O(t)
supernodes belonging to the merge tree. Moreover, half of them are
pruned in each pass, then removed from the working (active) vertex
set. We therefore perform O(t) iterations with O(lg ti) work each,
where ti < 2ti+1. This results in an overall work cost of O(t lg(t)) and

time cost of lg2(t), reducing the work by a log factor, but not the time
cost. As noted above, where the number of processors is much smaller

than the number of elements, the dominant cost is the work cost, and
we would therefore expect significant speedup. Moreover, when we
compress the vertices and arcs in each pass, we can test the remaining
number of vertices: when it reaches 0, no more iterations are required,
and we may terminate long before lg(t) passes are required.

Most of the time, the size of the active graph is a small multiple of
the tree size, and the performance improvement is in line with the ideal
case. In fact, it is commonly the case that fewer than lg(t) iterations
are required, indicating that the trees are generally unbalanced.

6 PARALLEL COMBINATION OF MERGE TREES

Given our parallel merge tree algorithm, we now identify parallelism
in the merge phase. The merge phase of the sweep and merge algo-
rithm is based on the observation that an upper leaf in the join tree is
always a leaf in the contour tree. From this, a queue is constructed
with all current leaves, which are transferred one by one to the contour
tree, updating both join and split trees as each vertex is transferred.

The choice of a queue to process the leaves was arbitrary, and on
principle we can transfer all leaves simultaneously, subject to preserv-
ing the necessary invariants in the two merge trees. In serial, this was
performed by deleting vertices one at a time, reconnecting their neigh-
bors if necessary. Since a given vertex may (for example) be a saddle
for multiple leaves, this means that read/write collisions in parallel will
happen, and we therefore replace the queue processing with a batch-
ing approach. For simplicity, we process upper and lower leaves in
alternating batches, using a lazy deletion strategy.

In the first batch, every upper leaf identifies its governing saddle,
and records this in the contour tree. This is illustrated in the first Phase
of Figure 10, where vertices 20,19,18,16,14,12,10 are transferred
to the contour tree and deleted from join and split tree. In the join
tree, deletion is trivial since all of these vertices are leaves. In the
split tree, these vertices lie between other vertices, whose connectivity
therefore needs adjustment, and it is clear that write conflicts on the
chain 20−19−18−16 are to be avoided.

These write conflicts are avoided by having each vertex mark itself
as logically deleted. We then collapse the chain 20−19−18−16 with
an additional path-doubling computation. For this, we initialize each
vertex to point downwards. In each iteration of the path-doubling, each
vertex updates to its neighbor’s neighbor, but only if its neighbor has
been flagged for deletion. At the end of this, vertices 20,19,18 will all
point to 17, 17 will point to 15, and so forth.

At the end of this step, we have the trees shown in Phase Ib: note
the chain 17− 15− 13− 11− 7. If we continue processing leaves in
batches as we have just described, each iteration will reduce a sin-
gle step on this chain, with the algorithm serialising along all such
chains. To avoid this, we insert an additional phase which (again) uses
pointer-doubling to collapse the chain down to vertex 7 in the join tree,
removing the additional vertices from the split tree as well.

Phases II, III, IV then repeat the process, alternating upper and
lower leaves until all vertices have been processed.



19

17

15

20

11

13

18

16

14

12

10

4

2

9

1

7

3

5

8

6

19

17

15

20

11

13

18

16

14

12

10

4

2

9

1

7

3

5

8

6

Contour Tree: Join Tree: Split Tree:

19

17

15

20

11

13

18

16

14

12

10

4

2

9

1

7

3

5

8

6

19

17

15

20

11

13

18

16

14

12

10

4

2

9

1

7

3

5

8

6

17

15

11

13

4

2

9

1

7

3

5

8

6

Contour Tree: Join Tree: Split Tree:

17

15

11

13

4

2

9

1

7

3

5

8

6

19

17

15

20

11

13

18

16

14

12

10

4

2

9

1

7

3

5

8

6

Contour Tree: Join Tree:

1

4

2

9

7

3

5

8

6

Split Tree:

19

17

15

20

11

13

18

16

14

12

10

4

2

9

1

7

3

5

8

6

Contour Tree: Join Tree:

9

7

3

5

8
9

7

3

5

8

Split Tree:

4

2

9

1

7

3

5

8

6

19

17

15

20

11

13

18

16

14

12

10

4

2

9

1

7

3

5

8

6

Contour Tree: Join Tree:

9

3

5

9

3

5

Split Tree:

PHASE Ia: TRANSFER ALL UPPER LEAVES

PHASE Ib: COLLAPSE UPPER LEAF CHAINS

PHASE II: TRANSFER ALL LOWER LEAVES (NO LEAF CHAINS)

PHASE III: TRANSFER ALL UPPER LEAVES (NO LEAF CHAINS)

PHASE IV: TRANSFER ALL LOWER LEAVES (NO LEAF CHAINS)

Fig. 10: Parallelization of Contour Tree Merge Phase. We first identify all upper leaves in parallel (top) and transfer them to the contour tree.
After deleting these vertices from the join and split trees, we collapse regular chains from upper leaves (second), then repeat with lower and
upper leaves, omitting collapses if there are no chains available. Note how the algorithm serializes along the W shape of vertices 8-5-9-3-7.

6.1 Algorithmic Analysis of Parallel Merge Phase

The performance of this parallel merge phase is dominated by the
number of iterations I required to process all supernodes. Transferring
leaves takes constant time per vertex, for a time bound of O(1) and
work bound of O(ti) in pass i, where ti is the number of vertices still
in the tree. However, the two path-doubling phases for collapse take
O(lg ti) time and O(ti lg ti). Formally, therefore, the bound is O(I lg t)
time and O(It lg t) work, although this can be refined to O(∑I

1 lg ti)

time and O(∑I
1 lg titi) work.

In the ideal case, we would have a logarithmic collapse as for the
merge tree construction phase, with I = O(lg t) and ti = O(t/2i). In

this case, the overall cost collapses to O(lg t2) time and O(t lg t) work.

Unfortunately, however, this does not occur in practice, due to three
effects which serialize the computation: leaf chain collapse, interior
chain collapse, and W-structures.

Leaf Chain Collapse: We observed in Phase Ib of Figure 10 that
the basic algorithm serializes along chains of vertices. The result of
this is that the computation may require O(d) iterations, where d is the
diameter of the contour tree, which in the worst case is O(t). While
the additional collapse described in Phase Ib accelerates this, a formal
improvement only occurs if we preserve the invariant that all leaves
are pruned and all degree 2 vertices are collapsed.

Interior Chain Collapse: The reason we can collapse the leaf
chains easily is that chains starting from leaves are easily identified



by propagating the leaf inwards. Similar interior chains are harder to
collapse, and we do not do so at present, because interior chains are
typically bound up with W-structures (below), and resolving these is
logically prior. Moreover, applying the leaf chain collapse alone re-
duces the practical cost of the merge phase to roughly the same as the
construction of the two merge trees. We therefore did not optimize this
stage further, as it would give us marginal advantage (for now).

W-Structures: In Figure 10 (bottom left), the sequence of edges
4− 8− 5− 9− 3− 7− 6 form a horizontal zigzag. We call this a W-
structure, and have reported elsewhere on its properties and how to
find the largest one in a contour tree [11, 22]. Because of this zigzag,
at most one edge at each end is removed in each alternating pass, and
therefore w, the size of the largest W-structure is a lower bound on the
number of iterations required. We are actively seeking accelerations
for this part of the computation, but as noted above, are not focussing
on it due to limited performance gains currently available.

Algorithmic Summary: The most that we can therefore claim is
O(I lg t) time and O(It lg t) work, but this is a very loose bound in
practice, and as we will see below, sufficiently fast in practice.

7 ADAPTATION TO NON-TRIANGULATED MESHES

Like sweep and merge [9], parallel pruning is most straightforward
and intuitive for triangulated meshes. Linear interpolation ensures that
critical points coincide with mesh vertices, and concepts such as vertex
neighborhood and link have long established definitions. As a result,
sweep and merge is effectively a graph algorithm whose input is the
set of vertices and edges of the triangulated mesh.

Carr & Snoeyink [8] showed how to construct topology graphs that
adapt the algorithm to other types of meshes. The general principle
is that a topology graph must contain all critical points, and that any
continuous path through a super-level set or sub-level set must be rep-
resentable by a path through the topology graph. It therefore becomes
feasible to define local graphs for each cell in the mesh that capture the
topology of the cell and its interpolant, then glue them together to get
a global topology graph on which the algorithm is run. This allowed
adaptation of the algorithm to bilinear and trilinear interpolants, and
on principle to higher-order interpolants.

These graphs could, however, be fairly complex, and very few pack-
ages use trilinear interpolants for isosurface extraction and visualiza-
tion. Instead, most isosurfacing algorithms use variants of the original
Marching Cubes [26] in which the cracks in the original version are
fixed [28]. These cases have simple topology graphs, as the isosur-
faces extracted always have super-level sets where only connectivity
along the edges of the cubes was needed, while sub-level sets require
connectivity along diagonals as well. As a result, separate topology
graphs can be defined for join and split sweeps, which are equiva-
lent to a standard rule in digital image processing: that foreground
pixels connect orthogonally, but background pixels also connect diag-
onally. In 3D cubic meshes, this means processing the six orthogonal
neighbors in the downward (join) sweep, the 18 orthogonal and face
diagonal neighbors in the upward (split) sweep.

In practice, this observation is significant for topological analysis
and visualization for two reasons. First, Marching Cubes are nearly
ubiquitous in visualization, and computing contour trees under the
same assumption assures that we use exactly the same isosurfaces as
those extracted for other purposes. Second, Marching Cubes gener-
ates 60-70% fewer triangles than a mesh constructed by subdividing
the cubes into tetrahedra [6].

To implement parallel peak pruning for non-triangulated meshes,
we start with the existing mechanism of topology graphs [8], but note
an important difference: sweep and merge detects merge events be-
tween sets in a disjoint set (union find) data structure while parallel
peak pruning identifies candidate neighbors for distinct paths to max-
ima (or minima). In the split and merge approach, it suffices to identify
all neighbors of a given vertex since it determines “automatically,” us-
ing union find, whether multiple neighboring vertices belong to the
same connected component of the link. For parallel peak pruning, this

Fig. 11: The choice of ascending paths is dictated by the number of
connected components in the upper link, illustrated by contours at
the center vertex value plus ε (grey regions). Left: only the edge-
connected vertices are in the upper link, and there are four connected
components. Center: For a contour at the center value minus ε (gray
region), the four components in the upper link have merged. Right:
one additional vertex is in the upper link means there are only three
connected components. The calculation can therefore not be restricted
to only edge-connected neighbors.

is not true, and we also wish to have a single representative edge for
each connected components to keep our computational cost down.

The general solution to this problem is to extract the upper link of
each vertex, and compute its connected components directly using a
union-find algorithm. One vertex is then chosen from each connected
component as a representative, and the ascending path traced through
it. We note that this is not strictly necessary, as we can simply include
ascending paths through every adjacent vertex in the upper link, but
this can result in twice as many edges in the active graph, with obvious
knock-on effects on performance.

For regular meshes, the upper link is bounded in size, so we opti-
mize further with a case table based on the relative sign of the neigh-
bors in the link, and look up the result rather than performing union-
find repeatedly. Appendix I provides more implementation details.

7.1 PPP for Marching Cubes Connectivity

We have just observed that we need one ascending path per connected
component of the upper link of each vertex v. For a cubic lattice, this
still holds, provided we understand the upper link to mean the outer
boundary of the set of cells incident to v. To see that this is true,
consider Figure 11, which shows the two-dimensional equivalent with
marching squares. In the left-hand example, each adjacent vertex is
in a separate component (shown as grey regions), and processing is
straightforward. In the right-hand example, however, the fact that the
upper right vertex is also above the central vertex’ value means that
we only have three connected components.

We therefore consider all twenty-six neighbors for our union-find,
and either add them one at a time using the existing rule [8] or pre-
compute a lookup table for all possible configurations. However, with
twenty-six neighbors, the lookup table would have 226 = 67,108,864
entries. We therefore use a lookup table to represent the connectiv-
ity inside each adjacent cube. Since there are 7 vertices in the cube
in addition to v, we only need 128 entries, and these record how the
edge-adjacent vertices are connected to each other in the upper link.

Over the entire neighborhood, we use these per-cube connections in
a union-find pass to compute the connected components of the upper
link, and choose one ascending edge per component. Since the total
number of vertices is a small constant in each neighborhood, we do
not use either path-compression or union-by-rank.

8 RESULTS & PERFORMANCE ANALYSIS

In the following we seek to characterize the performance of our al-
gorithm in practice. We first describe the design of our performance
evaluation study (Section 8.1). Based on the results from this study
we then try to answer critical questions concerning the correctness and
runtime performance of our algorithm as well as the impact of algo-
rithmic improvements, data size, data complexity, number of threads,
and compute architecture on runtime performance (Section 8.2).



Scale 1.0 0.5 0.25 0.125 0.0625 0.03125

#Pixel 21601 × 10800 × 5400 × 2700 × 1350 × 675 ×

nx×ny 43201 21600 10400 5400 2700 1350

#Nodes (s) 36,912,523 12,688,670 3,579,117 991,480 271,772 72,276

Complexity 3.96% 5.44% 6.14% 6.8% 7.46% 7.93%

Fig. 12: Visualization showing the full GTOPO dataset at the various
levels of resolution used for the scaling study. The table then shows
for each dataset the spatial resolution (nx×ny), number of supernodes
s in the contour tree, and relative topological complexity s/(nx∗ny).

Fig. 13: Isosurface visualization of the Ex field of a single timestep of
a 3D WarpX laser plasma particle accelerator simulation with a reso-
lution of (425×371×371).

8.1 Experiment Design

Implementation: We implemented the parallel peak pruning al-
gorithm for 2D and 3D data in C++ in several variations. We first
implemented a serial reference implementation, focusing on correct-
ness rather than performance. Subsequently we then optimized and
parallelized the code using OpenMP (PPP (OMP-ref)) for threading
and using Thrust (PPP (Thrust-ref)) for GPU. Unless indicated oth-
erwise, we focus on results from our final implementation in VTK-m
(PPP (VTK-m)), which is now publicly available. Using VTK-m en-
ables us to compile the code using various backends. We use the serial
backend for serial performance and the TBB backend for parallel scal-
ing using the Intel Thread Building Blocks library for threading. As
reference for comparison we use the original serial sweep and merge
algorithm (SAM) [9] and naı̈ve implementation of PPP (PPP (na)),
i.e., without the active topology graph optimization. Finally, we also
compare with the task-based parallel contour tree algorithm [18] avail-
able in the topology toolkit (TTK).

Data: To evaluate performance on real data we use the 2D
GTOPO30 dataset and 3D WarpX dataset. The GTOPO30 dataset
describes the Earth land topography and consists of 34 tiles; 27 at

6000×4800 pixel, 6 at 3600×4800 pixel, and 1 at 5400×5400 pixel.
When combining the tiles, the full dataset consists of (21601×43201)
pixel. Finally, we rescaled the full image by progressively reducing
resolution by half, i.e., G(1.0) to G(0.03125) (Figure 12).

The WarpX dataset models a laser-driven, plasma-based particle ac-
celerator in 3D (Figure 13). We use the electric field in the x direction
Ex for our tests. The scientists executed the same simulation model
at a spatial resolution of (425× 371× 371) and (6791× 371× 371)
nodes, respective. The higher resolution in the acceleration direction
enables more accurate resolution of the high frequencies of the laser
pulse whereas lower mesh resolutions are sufficient in the other di-
mensions to resolve the electromagnetic fields induced by the compar-
atively lower-frequency plasma waves.

We also use several 3D data sets made available to the visualiza-
tion community for our scaling studies. Most of these data sets are
from the Open SciVis Dataset page (https://klacansky.com/
open-scivis-datasets/), which includes many data sets from
the no longer available VolVis page (http://volvis.org). Fur-
thermore, we use a time step from the SciVis contest asteroid data
set [33], which is available from the Los Alamos National Laboratory
(https://dssdata.org). Appendix A provides a list of all 3D
data sets including source and size.

Architecture: To evaluate performance across different compute
architectures we used the following systems. Haswell refers to a
single compute node of the Haswell partition of the Cori supercom-

puter at NERSC, equipped with two 16-core Intelr Xeon TM E5-
2698 v3 (”Haswell”) processors at 2.3 GHz and 128 GB DDR4
2133 MHz memory. Each core supports two hyper-threads and has
two 256-bit-wide vector units, i.e., each node support 32 physical
and 64 hyper-threads. KNL refers to a single compute node of the

KNL parition of Cori, equipped with a single-socket Intelr Xeon
PhiTM 7250 (”Knights Landing”) processor with 68 cores at 1.4 GHz
with 4 hardware threads (272 threads total), two 512-bit-wide vec-
tor processing units, and 96 GB DDR4 2400 MHz memory. All
codes were compiled using gcc (version 7.2.0) with optimization
options -O3 -ffast-math -funroll-loops -march=native -dynamic

-w -DNDEBUG -std=c++11. (We note that -dynamic is an option of
the compiler wrappers on Cori that enables dynamic linking.) For eval-
uation of performance on GPU we use P100, which is equipped with

a single Intelr Xeon TM CPU E5-2650 v4 processor at 2.20GHz and

a NVidiar Tesla P100-PCIE graphics card with 12GB of memory and
1328 MHz base clock. For our performance tests we repeated each
test 5 times and report the time of the fastest run to mitigate the impact
of system background processes on measured runtimes. Since all tests
run on a single compute node, observed differences were low within a
range of 1-3 seconds. Varying I/O time, which we exclude from our
measurements, accounts for the majority of this difference, and the
remaining variations in actual compute time were only fractions of a
second.

8.2 Evaluation

When designing this evaluation we set out to answer a series of ques-
tions with regard to the performance of PPP in practice.

Are the results of PPP correct? To validate results, we saved
for all versions of PPP (i.e., serial, OpenMP, Thrust, and VTK-m) the
superarcs generated, sorted the arcs lexicographically, and compared
results using the Unix diff utility with the corresponding results of
the sweep and merge algorithms. We compared results for all tiles
of the GTOPO dataset as well as for the full GTOPO dataset (except
for GPU due to insufficient memory) and verified that the generated
contour trees match.

What is the impact of the active topology graph on compute
performance? In serial, PPP (VTK-m) requires ≈ 4.5− 21.2s per
6000 × 4800 GTOPO tile (Figure 14, top), whereas PPP (na) (i.e.,
the naı̈ve implementation without the active topology graph optimiza-
tions) did not complete a single tile within the allocated 24 hour run-
time. Even on G(0.03125), consisting of just 675×1350 pixels, PPP



0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Ti
m

e 
in

 se
co

nd
s

PPP, VTK-m (serial) 

Initialize Mesh
Join Tree Regular Chains
Join Tree Set Saddle Starts

Join Tree Compute
Split Tree Regular Chains
Split Tree Set Saddle Starts

Split Tree Compute
Contour Tree Compute
Others (ContourTreePPP1 Filter

0 1000000 2000000 3000000 4000000
Number of Supernodes

0.0
0.5
1.0
1.5
2.0
2.5

Ti
m

e 
in

 se
co

nd
s

PPP, VTK-m (64 Threads) 

Fig. 14: Performance of PPP (VTK-m) in serial (top) and using 64
threads (bottom) across 27 GTOPO tiles with a resolution 6000 ×

4800. The tiles are sorted along the x-axis based on their topologi-
cal complexity given by the number of supernodes in the contour tree.

(na) required at least 6567s in serial, whereas PPP (VTK-m) required
only 0.27s, i.e., a speed-up of ≈ 24300×. These results highlight the
critical role of the algorithmic improvements described in Section 5 on
performance.

What is the impact of using marching cubes connectivity on
performance? To answer this question we measured the perfor-
mance of PPP (VTK-m) on the 3D Warp dataset using Freudenthal
(six tets per cube [6]) and marching cubes connectivity, respectively.
The implementation of the contour tree phase is identical in both cases
as it depends only on the join and split trees (not the input mesh).
For the WarpX dataset with (6791×371×371) nodes we see that us-
ing marching cubes is in parallel 1.74 and 1.26× slower and in serial
2.17× and 1.43× slower for the split and join tree, respectively (Fig-
ure 15), whereas the performance of the contour tree phase remains
roughly the same. We also observe a combined parallel speed-up of
16× for Freudenthal and 19.4× for marching cubes. The main sub-
phases responsible for the slow down (as well as the larger speed ups)
are mainly “identify link components” and to a lesser extend “path
starts”. (We note that “path starts” and “pointer doubling” together
constitute the “monotone path construction” phase mentioned in Sec-
tion 4, while “identify link components” is the most expensive step
of identifying governing saddles that are subsequently used during
“peak pruning.”) This behavior is expected since marching cubes con-
nectivity considers a larger number of neighbors during these phases.
Furthermore, marching cubes connectivity requires an explicit “union
find” to identify distinct components in the upper link, which is con-
siderably more expensive than using a look-up table for the Freuden-
thal triangulation. Also, marching cubes connectivity considers sig-
nificantly more neighbors during the split tree construction, making
the “identify link components” phase more expensive for split trees
than for join trees. We also observe similar behavior for the smaller
(425×371×371) dataset (not shown).

How well does PPP scale with topological data complexity?
To address this question we computed the contour tree independently
using varying numbers of threads for the 27 GTOPO tiles with a res-
olution of 6000× 4800 pixel. As the resolution of the data is con-
stant, any performance differences must be attributed to variations in
the topology of the data. Figure 14 shows the runtime performance of
PPP (VTK-m) in serial and using 64 threads on the Haswell system.
The roughly linear slope in the plots with varying number of supern-
odes reflects the expected dependence of PPP on topological complex-

Peak
Pruning

Identify link
components

Pointer
Doubling

Path
Starts

Sp
lit

 T
re

e

Serial

Freudenthal: 160.74s
Marching Cubes: 348.98s

64 Threads

Freudenthal: 9.30s
Marching Cubes: 16.19s

Peak
Pruning

Identify link
components

Pointer
Doubling

Path
Starts

Jo
in

 T
re

e

Freudenthal: 163.31s
Marching Cubes: 233.82s

Freudenthal: 9.79s
Marching Cubes: 12.29s

0 20 40 60 80 100 120 140 160 180 200
Time in Seconds

Contour Tree
Compute Freudenthal: 34.20s

Marching Cubes: 35.26s

0 1 2 3 4 5 6 7 8
Time in Seconds

Freudenthal: 3.27s
Marching Cubes: 3.39s

Fig. 15: Performance of the subphases of the split (top), join (middle),
and contour tree (bottom) in serial (left) and using 64 threads (right) on
Haswell for processing the Ex field of the (6791×371×371) WarpX
dataset. The corresponding total times are shown in the legends of the
subplots. Here we divide the monotone path constructing phase into
the “path starts“ and “pointer doubling“ sub-phases.

ity. Note, while the topological complexity increases by a factor of
19525× from the simplest tile (with just 238 supernodes) to the most
complex tile (with 4,647,099 supernodes), the compute time increases
only by a factor of ≈ 4.68× (from 4.53s to 21.23s in serial and 0.61s
to 2.85s in parallel). Overall, these result indicate that the dependence
of PPP on topological complexity is well-behaved in practice. We also
observe that the breakdown of compute times across phases of PPP is
similar in serial and parallel, indicating that the parallel scaling of the
phases is well-behaved under varying topological complexity.

How well does PPP scale with varying data size? Figure 16
shows the performance of PPP (VTK-m) at varying numbers of threads
for all scaled versions of the GTOPO dataset. Figure 17 (top) also
shows the curves for G(1.0) in serial and using 64 threads. First,
we observe that the slope of the curves for PPP (VTK-m) in Figure
17 (top) is similar to the gray line showing the slope for perfect lin-
ear scaling. For additional detail, we can further see from Figure 16
that the increase in compute time between G(0.5) to G(1.0) is on the
order of 3.5 to 3.86× and ≈ 4.5× for G(0.25) to G(0.5) across all
numbers of threads. As the mesh size increases by a factor of 4 be-
tween each scaled version, these results indicate that PPP scales well
with increasing mesh size. Figure 18 (top) furthermore confirms that
the relative times per compute phase of the algorithm are similar for
the different scaled versions of GTOPO. This is expected given the
similar topology of the datasets and gives further evidence that the
algorithm and its different compute phases overall behave well with
growing data size. Finally, Figure 18 (bottom) shows the speed-ups
using 64 threads on Haswell compared to serial for all scaled GTOPO
datasets. We observe that speed-ups improve across all phases of the
algorithm as the data size increases, in particular from G(0.03125) to
G(0.25), with speed-ups leveling off afterwards. This indicates that
for the smaller scaled datasets (G(0.125) and smaller) there is likely
simply not enough work to utilize all available compute and memory
resources while scaling is consistent for the larger datasets.

How well does PPP scale with varying number of threads and
on different architectures? Using 64 threads we observe a 11×
speed-up on Haswell and a 26.2× speed-up on KNL compared to se-
rial for the full GTOPO dataset (Figure 17). Using all 272 threads on
KNL we then observe a speed-up of 31.2×. Profiling of the Thrust-
based PPP (Thrust-ref) using the VTune Performance Analyzer with
one GTOPO30 tile as input indicated an overall memory bound met-
ric of 43.4%, with the tree compression step and the monotone path
construction reporting memory-bound metrics above 70%. One possi-
ble explanation for the improved scaling on KNL compared to Haswell
may be that the algorithm hits the memory bound later on KNL, which
is consistent with the observation that the ratio of memory clock speed



0.
03

12
5

0.
06

25
0.

12
5

0.
25 0.

5
1.

0
0.

03
12

5
0.

06
25

0.
12

5
0.

25 0.
5

1.
0

0.
03

12
5

0.
06

25
0.

12
5

0.
25 0.

5
1.

0
0.

03
12

5
0.

06
25

0.
12

5
0.

25 0.
5

1.
0

0.
03

12
5

0.
06

25
0.

12
5

0.
25 0.

5
1.

0
0.

03
12

5
0.

06
25

0.
12

5
0.

25 0.
5

1.
0

0.
03

12
5

0.
06

25
0.

12
5

0.
25 0.

5
1.

0
0.

03
12

5
0.

06
25

0.
12

5
0.

25 0.
5

1.
00

50

100

150

200

250

300

350

400

450

500
Ti

m
e 

in
 S

ec
on

ds

Serial 2 Threads 4 Threads 8 Threads 16 Threads 24 Threads 32 Threads 64 Threads

484.19

318.84

175.07

105.21

69.55 65.84 63.94
43.92

125.69

85.44

47.42
28.13 18.44 17.21 16.56 12.54

27.87 18.87 10.47 6.33 4.12 3.84 3.70 2.85

Initialize Mesh
Join Tree Regular Chains
Join Tree Set Saddle Starts
Join Tree Compute
Split Tree Regular Chains
Split Tree Set Saddle Starts
Split Tree Compute
Contour Tree Compute
Others (ContourTreePPP1 Filter)

Fig. 16: PPP (VTK-m) scaling on Haswell with varying numbers of
threads and data sizes. Each stacked bar shows the results for a partic-
ular scaled version of the GTOPO dataset (i.e., G(0.03125) to G(1.0))
and number of threads used. The breakdown of the bars corresponds to
the main logical phases of the PPP implementation. The total runtime
is indicated by the total height of the stacked bars and for the three
largest datasets also via additional text labels on top of each bar.

to CPU clock speed is 1.7× on KNL and 0.93× on Haswell. KNL also
has twice the L2 cache per core and has two 512bit vector processing
units compared to two 256bit units on Haswell.

Compared to PPP (OMP-ref) in serial on Haswell, PPP (Thrust-
ref) on P100 is 18 to 34.4× and on average 22.4× faster for the
GTOPO tiles (Figure 19). Even when PPP (OMP-ref) uses 64 threads
on Haswell, PPP (Thrust-ref) on P100 is 5 to 16.6× and on average
8.13× faster (Figure 19, bottom). While CPU and GPU cores are
hard to compare due to their vastly different architecture, the fact that
the clock rate on the Haswell cores is 1.73× higher than on the P100
GPU cores provides some evidence that there may be more parallelism
present than is immediately visible from the direct speed-up rates.

How well does PPP scale for 3D data? To evaluate the per-
formance of PPP for 3D data, we computed the contour tree using
PPP (VTK-m) on 43 3D datasets (see Appendix A) on Haswell using
varying numbers of threads. Table 1 shows the runtime performance
and Figure 20 the corresponding parallel speed ups for twelve of the
3D datasets. The complete times and speed-ups for PPP and TTK for
all 43 datasets on Haswell are available in Appendix B-G. The overall
scaling and speed ups we observe for the 3D datasets is consistent with
the behavior we have seen for the 2D GTOPO datasets. For the larger
3D datasets we observe speed-ups of 12 to 13×, while our implemen-
tation shows consistent speed-ups and scaling for all of the medium
(2563 −4003) and large (> 5123) 3D datasets. Unsurprisingly, we ob-
serve that the use of hyperthreading generally yields greater speed-ups
for the larger datasets than for the medium-sized datasets.

How does the performance of PPP compare to Sweep and
Merge? On the full GTOPO dataset (Figure 17), serial PPP is al-
ready 6.3× faster than SAM. Using 64 threads on Haswell, we then
observe an ≈ 70× speed-up for PPP compared to the serial SAM.
Overall, we see that PPP is consistently significantly faster than SAM
in parallel and even in serial PPP is faster than SAM across all scales
of the GTOPO dataset on Haswell and on KNL for all but the very
small G(0.03125). When comparing the slope of the curves in Figure
17, we also observe that PPP scales significantly better with growing
data size than SAM.

With regard to topological complexity, we observe that PPP (VTK-
m) is already in serial on average 1.34× faster than SAM across all
27 tiles of the GTOPO datasets with a resolution of 6000 × 4800
(and 2.3× faster for gt30e020n90 where SAM is slowest). Using 64

10 1

100

101

102

103

104

Ha
sw

el
l 

 T
im

e 
in

 se
co

nd
s

3071.40s

484.19s

43.92s

GTOPO Scaled
Sweep & Merge (serial)
PPP, VTK-m (serial)
PPP, VTK-m (64 threads)

106 107 108 109

Number of Mesh Points

10 1

100

101

102

103

104

KN
L 

 T
im

e 
in

 se
co

nd
s

4912.37s
2660.82s

85.35s

Sweep & Merge (serial)
PPP, VTK-m (serial)
PPP, VTK-m (272 threads)

Fig. 17: Comparison of the performance of SAM and PPP, VTK-m in
serial and parallel for the different scaled GTOPO datasets and on the
Haswell (top) and KNL (bottom) compute system. Note the logarith-
mic scale on both coordinate axes. A gray line illustrates the slope for
perfect linear scaling.

0

20

40

60

80

100

Re
la

tiv
e 

Ti
m

e 
in

 %

Initialize Mesh
Join Tree Regular Chains
Join Tree Set Saddle Starts

Join Tree Compute
Split Tree Regular Chains
Split Tree Set Saddle Starts

Split Tree Compute
Contour Tree Compute
Others (ContourTreePPP1 Filter

0.03125 0.0625 0.125 0.25 0.5 1.0
GTOPO Scaled

0
2
4
6
8

10
12
14
16
18
20
22

Sp
ee

d-
up

Fig. 18: Analysis of the relative time per compute phase (top) and
speed-up compared to serial (bottom) for PPP, VTK-m (64 threads)
for all scaled GTOPO datasets. The corresponding absolute compute
performance times are shown in Figure 17 (top, green curve) as well
as Figure 16 (right-most bars labeled ”64 Threads”).

threads, PPP (VTK-m) is than between 8.8− 15.2× and on average
10.2× faster than the serial SAM.

How does the performance of PPP compare to TTK? The
topology toolkit (TTK) provides a task-based parallel implementation
of the contour tree [18]. The TTK implementation computes the aug-
mented contour tree (i.e., the contour tree including all regular nodes)
while PPP computes the contour tree without augmentation. As such,
TTK has to perform a certain amount of additional work, so any com-
parison should assume a significant margin for leeway.

Table 1 shows an overview of the performance results for PPP and
TTK on Haswell for 13 3D datasets of varying size. We present the



64 Threads 32 Threads 16 Threads 4 Threads Serial

name shape PPP TTK ↑ PPP TTK ↑ PPP TTK ↑ PPP TTK ↑ PPP TTK ↑

tacc
turbulence

2563 0.89 5.02 5.63 0.97 3.75 3.85 1.09 3.66 3.36 2.77 8.77 3.16 9.20 21.70 2.36

aneurism 2563 0.50 2.15 4.33 0.60 2.20 3.67 0.63 2.20 3.49 1.54 3.21 2.09 5.22 8.63 1.66

bonsai 2563 0.64 2.78 4.34 0.74 2.06 2.80 0.80 1.86 2.34 2.05 3.77 1.84 6.89 8.42 1.22

skull 2563 1.94 19.76 10.20 2.16 12.48 5.77 2.35 9.79 4.15 5.59 14.07 2.52 19.67 35.14 1.79

mrt angio 516×512×112 5.61 59.38 10.58 6.44 36.00 5.59 6.78 29.12 4.30 15.03 40.63 2.70 52.26 71.84 1.37

warpx ex
(small)

425×3712 2.19 19.84 9.07 2.60 22.41 8.62 2.91 22.32 7.68 7.72 42.99 5.57 27.43 127.65 4.65

prone 5122 ×463 17.15 156.11 8.91 20.68 92.65 4.48 21.93 80.50 3.67 49.62 139.14 2.80 169.27 300.99 1.77

asteroid 5003 3.91 22.48 5.74 4.83 20.11 4.16 5.08 20.64 4.06 12.92 45.74 3.54 45.23 94.13 2.08

vertebra 5123 6.81 44.78 6.57 8.01 30.76 3.84 8.92 29.98 3.36 21.91 65.84 3.01 77.14 157.12 2.04

magnetic
reconnection

5123 42.06 881.57 20.96 47.92 777.47 16.22 51.04 777.34 15.23 115.07 934.53 8.12 394.36 1108.90 2.81

kingsnake 10242 ×795 92.55 OOM — 121.54 OOM — 130.37 OOM — 295.01 OOM — 999.99 OOM —

warpx ex
(large)*

6791×3712 19.51 OOM — 22.85 OOM — 30.55 OOM — 92.62 OOM — 325.28 OOM —

nyx* 10243 250.49 OOM — 262.51 OOM — 330.06 OOM — 874.86 OOM — 3589.51 OOM —

Table 1: Performance of PPP and TTK on 3D data for varying numbers of threads on Haswell. For each number of threads we show the runtime
for PPP and TTK in seconds as well as the corresponding speed-up (↑) of PPP compared to TTK (OOM=out-of-memory). Datasets marked
with * were processed on a Cori login node, which has the same configuration as the Haswell compute nodes but with 512GB of main memory.

4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

Ti
m

e 
in

 se
co

nd
s

30.54s

21.22s

27.54s
PPP, OMP-ref (serial)
PPP, VTK-m (serial)
Sweep & Merge (serial)

0 1000000 2000000 3000000 4000000
Number of Supernodes

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

Ti
m

e 
in

 se
co

nd
s

6.50s

2.85s

1.23s

PPP, OMP-ref (64 threads, Haswell)
PPP, VTK-m (64 threads, Haswell)
PPP, Thrust-ref (P100 GPU)

Fig. 19: Comparison of the performance of the different algorithms
across 27 tiles of the GTOPO dataset. Each tile has a resolution 6000×
4800. The tiles are sorted along the x-axis of the plot based on the
complexity of their topology indicated by the number of supernodes
in the contour tree. For PPP, Thrust-ref we used the P100 system and
for all other results we used the Haswell system.

complete scaling results for all 43 3D datasets in Appendix B-H.

Across all 3D datasets we observe that PPP outperforms TTK in se-
rial between 1.1× to 5.5×. In parallel, we observe that TTK achieves
a maximum speed-up of 1.5× to 11.8× depending on the 3D datasets.
Here, TTK achieved its best performance for most datasets (20 of 34)
with 16 or fewer threads on Haswell. For larger numbers of threads
we then typically observe a reduction in performance for TTK.

In contrast, for PPP we observe maximum speed-ups of 1.5× to
17.5× depending on the dataset. For all dataset larger than 643, PPP
then shows a maximum speed-up of at least 4.1× and on average
10.9×. Further, for all datasets larger than 1283, PPP achieved its best
performance at the maximum available 64 threads and showed contin-
ued improvement in performance with increasing number of threads.
With this improved scaling, the best PPP time is between 2.4× and
18× faster than the best TTK time for all dataset larger than 643. When

643224168421
Number of Threads

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Sp
ee

d-
up

 re
la

tiv
e 

to
 se

ria
l

tacc turbulence (256x256x256)
aneurism (256x256x256)
bonsai (256x256x256)
skull (256x256x256)
foot (256x256x256)
mrt angio (416x512x112)

643224168421
Number of Threads

warp ex (small) (425x371x371)
asteroid (500x500x500)
vertebra (512x512x512)
mag. recon. (512x512x512)
kingsnake (1024x1024x795)
warp ex (large) (6791x371x371)
nyx (1024x1024x1024)

Fig. 20: Speed up compared to serial on Haswell for PPP on 6 medium
(left) and 7 large (right) 3D datasets See Tab. 1 for the corresponding
runtime performance values The gray area denotes the use of 2 threads
per core (i.e., hyperthreading).

comparing performance with the maximum number of 64 threads, PPP
is between 1.4× to 21× faster. Allowing for the differences in the
computation, we can therefore make the reasonable claim that PPP as
embedded in VTK-m is at least as efficient as the TTK implementa-
tion in serial while showing significantly better parallel scaling and
accordingly much faster performance in parallel.

How does the performance of PPP compare to Distributed
Merge Trees In addition to testing against the TTK implementation
of the contour tree computation, we also ran some preliminary tests
against the Distributed Merge Trees (DMT) computation [29], which
was designed to run on a distributed cluster rather than in shared mem-
ory. In serial, however, it collapses to the sweep and merge algorithm
for computing the merge tree.

For the mrt angio dataset (416×512×112), DMT took 68 seconds
for the fully augmented merge tree, where a serial run of PPP took
18.14 seconds. We also ran it on the large WarpX Ex data set (6791×
371× 371) with 64 tasks and compared it with PPP running on 64
threads. As shown in Table 1, PPP took a total of 19.51 seconds for the
contour tree: this included 8.34 seconds for the join tree, 8.8 seconds



for the split tree, and 2.3 seconds to combine them into the contour
tree. Against this, DMT took around 100 seconds to compute the join
tree, the bulk of which (90 seconds) was used to compute 64 join trees
on 1/64 of the data each, where 10 seconds were used to reconcile
them into the distributed structure.

Since the two computations are significantly different, the strongest
conclusion we are comfortable drawing at present is that DMT is less
efficient than sweep and merge when run in serial on a single node,
and that it appears to be considerably slower than PPP.

What is the impact of VTK-m on performance? In serial, we
observe that PPP (VTK-m) is between 1.19− 1.46× and on average
1.35× faster than the reference PPP (OMP-ref) (Figure 19, top). Pos-
sible sources for this gain in performance may be differences in per-
formance between VTK-m and C++ standard library (STL) data struc-
tures and algorithms and differences in auto-vectorization. In parallel
using 64 threads the VTK-m implementation is between 2.3− 5.1×
and on average 2.7× faster than the reference PPP (OMP-ref) imple-
mentation. This additional gain in performance is likely due to differ-
ences in scaling caused by the use of TBB compared to OpenMP.

9 CONCLUSIONS & FUTURE WORK

We have provided an extended description and benchmarks of the first
pure data-parallel algorithm for the merge tree and contour tree in
unaugmented (canonical) form [12] with strong guarantees on com-
putation time, and practical performance faster than the sweep and
merge algorithm, with parallel speedup of at least one order of mag-
nitude on GPU. We have further extended this algorithm to 3D data,
both for Freudenthal triangulations and marching cubes connectivity.
Our implementation is being released through VTK-m: while we have
targetted regular mesh structures, we have engineered it so that mini-
mal changes will be required for computations on irregular meshes in
the future.

In future work, we will improve performance for computing the
fully augmented contour tree, extend the scalability with a hybrid dis-
tributed/ data-parallel stage, and add geometric computation and sim-
plification to allow the contour tree to be used for in situ analysis.

ACKNOWLEDGEMENTS

We would like to acknowledge EPSRC Grant EP/J013072/1 and the
University of Leeds for supporting the first author’s study leave at Los
Alamos National Laboratory. This work was supported by the U.S.
Department of Energy, Office of Science, Office of Advanced Scien-
tific Computing Research, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231 to the Lawrence Berkeley Na-
tional Laboratory (“Towards Exascale: High Performance Visualiza-
tion and Analytics Program”) and under Award Number 14-017566
at Los Alamos National Laboratory (“XVis: Visualization for the
Extreme-Scale Scientific-Computation Ecosystem”), with Lucy Now-
ell the program manager for both awards. This research used resources
of the University of Leeds Advanced Research Computing facility
and of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Fa-
cility operated under Contract No. DE-AC02-05CH11231. We thank
Li-ta Lo for his contributions. We thank Jean-Luc Vay and Maxence
Thevenet for making the WarpX dataset available to us.

REFERENCES

[1] A. Acharya and V. Natarajan. A parallel and memory efficient algorithm

for constructing the contour tree. In Proceedings of the 2015 IEEE Pacific

Visualization Symposium (PacificVis), pages 271–278, Apr. 2015.

[2] T. F. Banchoff. Critical Points and Curvature for Embedded Polyhedra.

Journal of Differential Geometry, 1:245–256, 1967.

[3] G. Blelloch. Vector Models for Data-Parallel Computing. PhD thesis,

MIT, 1990.

[4] H. Carr. Topological Manipulation of Isosurfaces. PhD thesis, University

of British Columbia, Vancouver, BC, Canada, 2004.

[5] H. Carr and D. Duke. Joint Contour Nets. IEEE Transactions on Visual-

ization and Computer Graphics, 20(8):1100–1113, 2014.

[6] H. Carr, T. Möller, and J. Snoeyink. Artifacts Caused by Simplicial Sub-

division. IEEE Transactions on Visualization and Computer Graphics,

12(2):231–242, March/April 2006.

[7] H. Carr, C. Sewell, L.-T. Lo, and J. Ahrens. Hybrid data-parallel con-

tour tree computation. Technical Report LA-UR-15-24579, Los Alamos

National Laboratory, 2015.

[8] H. Carr and J. Snoeyink. Representing Interpolant Topology for Contour

Tree Computation. In H.-C. Hege, K. Polthier, and G. Scheuermann,

editors, Topology-Based Methods in Visualization II, Mathematics and

Visualization, pages 59–74. Springer, 2009.

[9] H. Carr, J. Snoeyink, and U. Axen. Computing Contour Trees in

All Dimensions. Computational Geometry: Theory and Applications,

24(2):75–94, 2003.

[10] H. Carr, J. Snoeyink, and M. van de Panne. Flexible Isosurfaces: Simpli-

fying and Displaying Scalar Topology Using the Contour Tree. Compu-

tational Geometry: Theory and Applications, 43(1):42–58, 2010.

[11] H. Carr, J. Tierny, and G. H. Weber. Pathological and Test Cases For

Reeb Analysis. Accepted for Publication.

[12] H. Carr, G. H. Weber, C. Sewell, and J. Ahrens. Parallel Peak Pruning for

Scalable SMP Contour Tree Computation. In Large Scale Data Analysis

and Visualization, pages 75–84, 2016.

[13] Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and Optimal Output-

Sensitive Construction of Contour Trees Using Monotone Paths. Compu-

tational Geometry: Theory and Applications, 30:165–195, 2005.

[14] H. Edelsbrunner, J. Harer, and A. K. Patel. Reeb Spaces of Piecewise

Linear Mappings. In Proceedings of ACM Symposium on Computational

Geometry, pages 242–250., 2008.

[15] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological Persis-

tence and Simplification. In Proceedings of the 41st Annual Symposium

on Foundations of Computer Science, pages 454–463. IEEE, 2000.

[16] H. Edelsbrunner and E. P. Mücke. Simulation of Simplicity: A Tech-

nique to Cope with Degenerate Cases in Geometric Algorithms. ACM

Transactions on Graphics, 9(1):66–104, 1990.

[17] C. Gueunet, P. Fortin, and J. Jomier. Contour forests: Fast multi-threaded

augmented contour trees. In 2016 IEEE 6th Symposium on Large Data

Analysis and Visualization (LDAV), pages 85–92, Oct 2016.

[18] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based Augmented

Merge Trees with Fibonacci Heaps. In Large Scale Data Analysis and

Visualization, 2017.

[19] F. Guo, H. Li, W. Daughton, and Y.-H. Liu. Formation of hard power

laws in the energetic particle spectra resulting from relativistic magnetic

reconnection. Phys. Rev. Lett., 113:155005, Oct 2014.

[20] K. Heitmann, N. Frontiere, C. Sewell, S. Habib, A. Pope, H. Finkel,

S. Rizzi, J. Insley, and S. Bhattacharya. The Q Continuum Simulation:

Harnessing the Power of GPU Accelerated Supercomputers. To appear

in the Astrophysical Journal Supplement., 2015.

[21] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology Match-

ing for Fully Automatic Similarity Estimation of 3D Shapes. ACM Trans-

actions on Graphics, pages 203–212, 2001.

[22] P. Hristov and H. Carr. W-Structures in Contour Trees. In preparation.

[23] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[24] A. G. Landge, V. Pascucci, A. Gyulassy, J. C. Bennett, H. Kolla, J. Chen,

and P. T. Bremer. In-situ feature extraction of large scale combustion

simulations using segmented merge trees. In SC14: International Confer-

ence for High Performance Computing, Networking, Storage and Analy-

sis, pages 1020–1031, Nov. 2014.

[25] L.-T. Lo, C. Sewell, and J. Ahrens. PISTON: A Portable Cross-Platform

Framework for Data-Parallel Visualization Operators. In Proceedings of

Eurographics Symposium on Parallel Graphics and Visualization, pages

11–20, 2012.

[26] W. E. Lorenson and H. E. Cline. Marching Cubes: A High Resolution 3D

Surface Construction Algorithm. Computer Graphics, 21(4):163–169,

1987.

[27] S. Maadasamy, H. Doraiswamy, and V. Natarajan. A hybrid parallel algo-

rithm for computing and tracking level set topology. In High Performance

Computing (HiPC), 2012 19th International Conference on, pages 1–10.

IEEE, Dec. 2012.

[28] C. Montani, R. Scateni, and R. Scopigno. A modified look-up table for

implicit disambiguation of Marching Cubes. Visual Computer, 10:353–

355, 1994.

[29] D. Morozov and G. Weber. Distributed Merge Trees. ACM SIGPLAN

Notices, 48(8):93–102, 2013.

[30] D. Morozov and G. Weber. Distributed Contour Trees. In P.-T. Bremer,



I. Hotz, V. Pascucci, and R. Peikert, editors, Topological Methods in Data

Analysis and Visualization III, Mathematics and Visualization, pages 89–

102. Springer, 2014.

[31] V. Pascucci and K. Cole-McLaughlin. Parallel Computation of the Topol-

ogy of Level Sets. Algorithmica, 38(2):249–268, 2003.

[32] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. The TOPORRERY:

Computation and Presentation of Multi-Resolution Topology, pages 19–

40. Springer-Verlag, Berlin Heidelberg, Germany, 2009. Preliminary

version appeared in the proceedings of the IASTED conference on Visu-

alization, Imaging, and Image Processing (VIIP 2004), 2004, pp.452-290.

[33] J. Patchett and G. Gisler. Deep water impact ensemble data set. Technical

Report LA-UR-17-21595, Los Alamos National Laboratory, 2017.

[34] G. Reeb. Sur les points singuliers d’une forme de Pfaff complètement

intégrable ou d’une fonction numérique. Comptes Rendus de l’Acadèmie

des Sciences de Paris, 222:847–849, 1946.

[35] C. Sewell, K. Heitmann, L.-T. Lo, S. Habib, and J. Ahrens. Utilizing

Many-Core Accelerators for Halo and Center Finding within a Cosmol-

ogy Simulation. In submission., 2015.

[36] C. Sewell, L.-T. Lo, and J. Ahrens. Portable Data-Parallel Visualiza-

tion and Analysis in Distributed Memory Environments. In Proceedings

of the IEEE Symposium on Large-Scale Data Analysis and Visualization

(LDAV), pages 25–33, 2013.

[37] S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, and M. Ueda. Al-

gorithms for Extracting Correct Critical Points and Constructing Topo-

logical Graphs from Discrete Geographical Elevation Data. Computer

Graphics Forum, 14(3):C–181–C–192, 1995.

[38] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.

Journal of the ACM, 22:215–225, 1975.

[39] M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. R.

Schikore. Contour Trees and Small Seed Sets for Isosurface Traversal. In

Proceedings, 13th ACM Symposium on Computational Geometry, pages

212–220, 1997.

[40] M. J. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci, and D. R.

Schikore. Efficient contour tree and minimum seed set construction,

pages 71–86. John Wiley & Sons, May 2004.

[41] W. Widanagamaachchi, C. Christensen, P.-T. Bremer, and V. Pascucci. In-

teractive Exploration of Large-Scale Time-Varying Data Using Dynamic

Tracking Graphs. In Proceedings of Large-Scale Data Analysis and Vi-

sualization (LDAV), pages 9–17, 2012.



APPENDIX

A SHAPE AND SIZE OF THE 3D DATASETS USED IN THE PERFORMANCE EVALUATION

name source shape # nodes # supernodes

marschner lobb Marschner and Lobb [41, 41, 41] 68,921 1,506
nucleon SFB 382 of the German Research Council (DFG) [41, 41, 41] 68,921 579
silicium VolVis distribution of SUNY Stony Brook, NY, USA [98, 34, 34] 113,288 458
neghip VolVis distribution of SUNY Stony Brook, NY, USA [64, 64, 64] 262,144 2,242
fuel SFB 382 of the German Research Council (DFG) [64, 64, 64] 262,144 344
tooth TBD [103, 94, 161] 1,558,802 231,242
shockwave TBD [64, 64, 512] 2,097,152 1,133
hydrogen atom SFB 382 of the German Research Council (DFG) [128, 128, 128] 2,097,152 13,593
lobster VolVis distribution of SUNY Stony Brook, NY, USA [301, 324, 56] 5,461,344 323,349
mri ventricles Dirk Bartz, VCM, University of Tübingen, Germany [256, 256, 124] 8,126,464 1,562,438
engine General Electric [256, 256, 128] 8,388,608 467,702
statue leg German Federal Institute for Material Research and

Testing (BAM), Berlin, Germany
[341, 341, 93] 10,814,133 353,877

tacc turbulence Gregory D. Abram and Gregory P. Johnson, Texas Ad-
vanced Computing Center, The University of Texas at
Austin. Simulation by Diego A. Donzis, Texas A&M
University, P.K. Yeung, Georgia Tech

[256, 256, 256] 16,777,216 313,281

aneurism Philips Research, Hamburg, Germany [256, 256, 256] 16,777,216 54,197
bonsai S. Roettger, VIS, University of Stuttgart [256, 256, 256] 16,777,216 179,627
skull Siemens Medical Solutions, Forchheim, Germany [256, 256, 256] 16,777,216 1,710,477
foot Philips Research, Hamburg, Germany [256, 256, 256] 16,777,216 719,091

mrt angio Özlem Gürvit, Institute for Neuroradiology, Frankfurt,
Germany

[416, 512, 112] 23,855,104 4,818,339

stent Michael Meißner, Viatronix Inc., USA [512, 512, 174] 45,613,056 2,856,825
warpx small Ez WarpX collaboration [425, 371, 371] 58,497,425 111,396
warpx small Ex WarpX collaboration [425, 371, 371] 58,497,425 358,203
warpx small rho WarpX collaboration [425, 371, 371] 58,497,425 106,908
warpx small Ey WarpX collaboration [425, 371, 371] 58,497,425 100,467
pancreas Roth HR, Lu L, Farag A, Shin H-C, Liu J, Turkbey EB,

Summers RM. DeepOrgan: Multi-level Deep Convolu-
tional Networks for Automated Pancreas Segmentation

[240, 512, 512] 62,914,560 6,682,631

bunny Stanford Radiology & Computer Science Departments [512, 512, 361] 94,633,984 11,110,783
backpack Kevin Kreeger, Viatronix Inc., USA [512, 512, 373] 97,779,712 5,693,268
present Christoph Heinzl, 2006 [492, 492, 442] 106,992,288 11,547,958
neocortical layer 1 axons V De Paola, MRC Clinical Sciences Center, Imperial

College London
[1464, 1033, 76] 114,935,712 9,289,314

prone Walter Reed Army Medical Center, USA [512, 512, 463] 121,372,672 12,087,883
asteroid John Patchett and Galen Gisler, Los Alamos National

Laboratory [33]
[500, 500, 500] 1250,00,000 804,757

christmas tree Armin Kanitsar, 2002 [512, 499, 512] 130,809,856 19,962,839
vertebra Michael Meißner, Viatronix Inc., USA [512, 512, 512] 134,217,728 2,808,594
magnetic reconnection Bill Daughton (LANL) and Berk Geveci (KitWare) [19] [512, 512, 512] 134,217,728 27,860,405
marmoset neurons Frederick Federer, Moran Eye Institute, University of

Utah
[1024, 1024, 314] 329,252,864 48,399,592

stag beetle Meister Eduard Grl̈ler, Georg Glaeser, Johannes Kast-
ner, 2005

[832, 832, 494] 341,958,656 712,098

pawpawsaurus Matthew Colbert, 4 February 2014 [958, 646, 1088] 673,328,384 76,373,336
spathorhynchus Matthew Colbert, 17 February 2005 [1024, 1024, 750] 786,432,000 39,376,047
kingsnake DigiMorph.org, The University of Texas High-

Resolution X-ray CT Facility (UTCT), and NSF grant
IIS-9874781

[1024, 1024, 795] 833,617,920 50,552,413

warpx large Ey WarpX collaboration [6791, 371, 371] 934,720,031 330,912
warpx large rho WarpX collaboration [6791, 371, 371] 934,720,031 322,028
warpx large Ez WarpX collaboration [6791, 371, 371] 934,720,031 378,067
warpx large Ex WarpX collaboration [6791, 371, 371] 934,720,031 242,442
Nyx particle mass density Zarija Lukić, Center for Computational Cosmology,

Lawrence Berkeley National Laboratory
[1024, 1024, 1024] 1,073,741,824 144,464,050

Table A1: Overview of the shape and size of the 3D datasets used in the performance evaluation with datasets sorted by size. Most data sets
are from the Open SciVis Dataset page (https://klacansky.com/open-scivis-datasets/). The WarpX and Nyx data sets are
courtesy of collaborators at Lawrence Berkeley National Laboratory and not publically available. The asteroid data set is available from the Los
Alamos National Laboratory (https://dssdata.org).



B PPP RESULTS FOR 3D DATASETS ON HASWELL

64 32 24 16 8 4 2 1

marschner lobb 0.033055 0.030258 0.031103 0.027123 0.028659 0.031116 0.036576 0.039753
nucleon 0.031096 0.026896 0.026699 0.026854 0.024182 0.027759 0.034495 0.036596
silicium 0.034715 0.029465 0.029583 0.032216 0.028851 0.034026 0.043325 0.050460
neghip 0.043687 0.037691 0.037577 0.040677 0.041616 0.052291 0.068589 0.097084
fuel 0.039960 0.036719 0.037327 0.038628 0.040577 0.047113 0.063771 0.085372
tooth 0.267086 0.243260 0.248558 0.254357 0.342220 0.518939 0.816788 1.591930
shockwave 0.097280 0.094213 0.093131 0.095394 0.130586 0.187419 0.317553 0.587685
hydrogen atom 0.109471 0.108616 0.107407 0.111205 0.148911 0.216281 0.356003 0.621548
lobster 0.465318 0.478225 0.487549 0.512951 0.724602 1.132370 1.912070 3.564980
mri ventricles 1.481870 1.623060 1.691120 1.745950 2.498200 3.986720 6.927940 14.049000
engine 0.667967 0.717370 0.740272 0.785006 1.139780 1.787140 3.105430 6.028240
statue leg 0.603635 0.653635 0.673348 0.695886 1.036650 1.669470 2.894090 5.458320
tacc turbulence 0.891400 0.971992 1.011880 1.089030 1.668750 2.771720 4.841090 9.196700
aneurism 0.497326 0.598067 0.606651 0.630344 0.921900 1.537790 2.795060 5.215160
bonsai 0.640259 0.735186 0.757202 0.798286 1.228990 2.050770 3.577160 6.890100
skull 1.937480 2.164390 2.224800 2.357210 3.437780 5.590730 9.591030 19.672300
foot 1.081000 1.181380 1.222440 1.262570 1.898590 3.062520 5.324510 10.592500
mrt angio 5.615060 6.444860 6.636290 6.779310 9.555340 15.031600 25.812000 52.262700
stent 3.942580 4.485490 4.674960 4.850010 7.195720 11.500400 20.411000 41.098100
warpx small Ez 1.863410 2.244090 2.319450 2.459290 3.870990 6.617620 11.867700 23.476900
warpx small rho 1.747890 2.122500 2.189420 2.303060 3.623980 6.133930 11.015500 21.554800
warpx small Ex 2.188610 2.600140 2.712100 2.907770 4.653710 7.716100 13.842300 27.427500
warpx small Ey 1.822880 2.248890 2.339130 2.482620 3.924610 6.682670 12.007900 23.438100
pancreas 8.418060 10.037000 10.324500 10.664300 15.006200 23.516300 41.645100 81.438400
bunny 15.296000 17.878300 18.425300 18.800800 26.908300 42.765500 72.919300 144.755000
backpack 9.077100 10.402100 10.779200 11.118400 15.877700 25.664500 44.431200 86.976700
present 16.814100 19.730600 20.246400 20.893400 29.354200 45.740100 78.807700 161.914000
neocortical layer
1 axons

13.962900 15.741300 16.328500 16.895600 24.072200 38.760300 67.291800 131.801000

prone 17.512400 20.680000 21.173900 21.929300 31.087700 49.612900 86.311500 169.273000
asteroid 3.915640 4.831200 4.939870 5.079580 7.670890 12.924200 23.023200 45.232200
christmas tree 28.032000 32.277800 33.110200 33.840500 46.654300 72.853800 125.615000 244.865000
vertebra 6.814380 8.012720 8.401800 8.921680 13.465800 21.907900 39.625500 77.141100
magnetic recon-
nection

42.059000 47.922300 49.375900 51.038000 72.470400 115.074000 204.075000 394.356000

marmoset
neurons

72.946000 83.369200 85.129100 87.734900 123.638000 200.107000 344.231000 678.229000

stag beetle 9.713370 11.887400 11.998100 12.258100 18.675600 31.438200 58.305700 112.556000
pawpawsaurus 116.667000 154.088000 158.855000 161.947000 237.537000 379.057000 659.068000 1301.130000
spathorhynchus* 78.139400 80.754100 88.111600 102.787000 157.699000 255.936000 437.597000 844.489000
kingsnake 92.553600 121.540000 124.073000 130.367000 181.377000 295.014000 502.689000 999.994000
warpx large Ey* 19.926100 22.028700 25.209700 31.117700 52.116100 99.732400 185.629000 332.137000
warpx large
rho*

19.398200 22.225600 25.102500 30.858400 50.491600 94.365700 180.433000 325.116000

warpx large Ez* 19.698200 22.551600 25.811100 31.523200 51.664700 94.584300 182.051000 345.387000
warpx large Ex* 19.514700 22.853700 24.664400 30.554600 49.821300 92.615300 176.965000 325.281000
Nyx particle
mass density*

250.491000 262.512000 276.267000 330.055000 520.232000 874.856000 1950.600000 3589.510000

Table A2: PPP runtime in seconds on Haswell for all 3D datasets. We repeated each evaluation 5 times and report here the best time. Datasets
marked with * were processed on a Cori login node, which has the same configuration as the Haswell compute node but with 512GB of main
memory, to accommodate the larger memory requirements to process the largest files.



C PPP SPEED-UP FOR 3D DATASETS ON HASWELL

64 32 24 16 8 4 2 1

marschner lobb 1.202617 1.313797 1.278088 1.465629 1.387084 1.277562 1.086851 1.0
nucleon 1.176891 1.360659 1.370709 1.362787 1.513382 1.318338 1.060895 1.0
silicium 1.453571 1.712511 1.705681 1.566298 1.748980 1.483001 1.164683 1.0
neghip 2.222263 2.575780 2.583574 2.386687 2.332853 1.856607 1.415441 1.0
fuel 2.136447 2.325041 2.287120 2.210095 2.103956 1.812084 1.338734 1.0
tooth 5.960365 6.544150 6.404662 6.258644 4.651774 3.067663 1.949012 1.0
shockwave 6.041170 6.237827 6.310318 6.160633 4.500368 3.135675 1.850667 1.0
hydrogen atom 5.677741 5.722435 5.786848 5.589209 4.173956 2.873798 1.745907 1.0
lobster 7.661384 7.454608 7.312045 6.949943 4.919915 3.148247 1.864461 1.0
mri ventricles 9.480589 8.655872 8.307512 8.046622 5.623649 3.523950 2.027876 1.0
engine 9.024757 8.403251 8.143277 7.679228 5.288950 3.373121 1.941193 1.0
statue leg 9.042418 8.350716 8.106239 7.843699 5.265345 3.269493 1.886023 1.0
tacc turbulence 10.317142 9.461703 9.088726 8.444855 5.511131 3.318048 1.899717 1.0
aneurism 10.486401 8.720026 8.596640 8.273514 5.656969 3.391334 1.865849 1.0
bonsai 10.761426 9.371914 9.099421 8.631117 5.606311 3.359762 1.926137 1.0
skull 10.153550 9.089074 8.842278 8.345587 5.722385 3.518735 2.051114 1.0
foot 9.798797 8.966209 8.665047 8.389634 5.579140 3.458753 1.989385 1.0
mrt angio 9.307594 8.109206 7.875289 7.709147 5.469476 3.476855 2.024744 1.0
stent 10.424164 9.162455 8.791113 8.473818 5.711465 3.573624 2.013527 1.0
warpx small Ez 12.598891 10.461657 10.121753 9.546210 6.064831 3.547635 1.978218 1.0
warpx small rho 12.331897 10.155383 9.844982 9.359200 5.947825 3.514028 1.956770 1.0
warpx small Ex 12.531927 10.548470 10.113012 9.432486 5.893685 3.554581 1.981426 1.0
warpx small Ey 12.857731 10.422075 10.020007 9.440873 5.972084 3.507296 1.951890 1.0
pancreas 9.674248 8.113819 7.887878 7.636544 5.426984 3.463062 1.955534 1.0
bunny 9.463585 8.096687 7.856317 7.699406 5.379567 3.384855 1.985140 1.0
backpack 9.581992 8.361456 8.068938 7.822771 5.477916 3.388989 1.957559 1.0
present 9.629656 8.206238 7.997175 7.749529 5.515872 3.539870 2.054545 1.0
neocortical layer 1 axons 9.439371 8.372943 8.071838 7.800907 5.475237 3.400412 1.958649 1.0
prone 9.665894 8.185348 7.994418 7.719033 5.445015 3.411875 1.961187 1.0
asteroid 11.551675 9.362519 9.156557 8.904713 5.896604 3.499807 1.964636 1.0
christmas tree 8.735195 7.586174 7.395455 7.235856 5.248498 3.361046 1.949329 1.0
vertebra 11.320340 9.627330 9.181497 8.646477 5.728668 3.521154 1.946754 1.0
magnetic reconnection 9.376257 8.229071 7.986811 7.726713 5.441615 3.426977 1.932407 1.0
marmoset neurons 9.297686 8.135247 7.967064 7.730436 5.485603 3.389332 1.970273 1.0
stag beetle 11.587739 9.468513 9.381152 9.182173 6.026901 3.580230 1.930446 1.0
pawpawsaurus 11.152511 8.444071 8.190677 8.034295 5.477589 3.432544 1.974197 1.0
spathorhynchus 10.807467 10.457537 9.584311 8.215913 5.355069 3.299610 1.929833 1.0
kingsnake 10.804485 8.227695 8.059723 7.670607 5.513345 3.389649 1.989290 1.0
warpx large Ey 16.668440 15.077467 13.174968 10.673572 6.373021 3.330282 1.789252 1.0
warpx large rho 16.760112 14.627997 12.951539 10.535737 6.439012 3.445277 1.801866 1.0
warpx large Ez 17.533937 15.315410 13.381336 10.956597 6.685164 3.651631 1.897199 1.0
warpx large Ex 16.668511 14.233188 13.188279 10.645893 6.528954 3.512173 1.838109 1.0
Nyx particle mass density 14.329896 13.673699 12.992902 10.875490 6.899825 4.102972 1.840208 1.0

Table A3: PPP speed-up compared to serial on Haswell for all 3D datasets. See Appendix B for the corresponding timings.



D PPP RESULTS FOR 3D DATASETS ON KNL

272 64 32 16 8 1

marschner lobb 0.218029 0.083152 0.083680 0.082941 0.084798 0.175909
nucleon 0.171768 0.069165 0.069328 0.079099 0.071143 0.159650
silicium 0.169682 0.083132 0.083929 0.086475 0.080865 0.238604
neghip 0.266221 0.096589 0.096296 0.102804 0.130781 0.533827
fuel 0.195899 0.081277 0.083251 0.100624 0.116542 0.511699
tooth 1.867430 0.764428 0.774809 0.954735 1.394060 7.995990
shockwave 0.543238 0.214694 0.231911 0.341925 0.572874 3.968180
hydrogen atom 0.788345 0.255941 0.271915 0.382899 0.620761 4.149850
lobster 3.490710 1.241450 1.389550 1.887140 3.014330 19.525300
mri ventricles 7.221250 3.489950 4.077420 5.816410 9.654530 66.537300
engine 4.415880 1.678270 1.943990 2.777880 4.594360 30.638600
statue leg 4.080970 1.492490 1.719010 2.520060 4.306190 29.492300
tacc turbulence 4.784990 2.014940 2.424700 3.757840 6.581700 46.564300
aneurism 2.572440 0.990454 1.342770 2.336510 4.414440 33.832100
bonsai 4.110850 1.354680 1.762940 2.888570 5.239290 38.565800
skull 8.397010 4.320860 5.160200 7.556220 12.854200 89.934200
foot 5.563140 2.565990 3.045920 4.587310 7.849450 55.026300
mrt angio 16.969500 10.171000 12.179100 18.137300 31.672600 229.592000
stent 13.120000 7.147150 9.318360 14.934100 26.700400 197.327000
warpx small Ez 6.432710 3.427210 5.186660 9.210940 17.596200 135.205000
warpx small rhow 5.720800 3.085190 4.856140 8.754000 16.788400 129.846000
warpx small Ex 7.983250 4.175520 6.047640 10.492100 19.696400 149.263000
warpx small Ey 5.882770 3.416140 5.267330 9.407430 18.123800 139.202000
pancreas 20.680000 13.174500 17.258100 27.691100 49.470400 359.771000
bunny 31.624500 22.063800 29.156000 47.135700 85.452900 632.973000
backpack 22.696700 15.054300 19.978500 31.758800 57.158600 416.063000
present 34.516700 25.162500 32.908500 52.947800 94.975300 708.680000
neocortical layer 1 axons 30.848300 21.947200 28.349400 44.635700 79.366200 579.790000
prone 34.981000 24.836100 33.474400 55.221800 99.523300 738.359000
asteroid 10.286100 6.906800 10.598400 19.046900 36.157000 275.539000
christmas tree 54.173600 39.821500 51.445000 81.023400 144.990000 1060.290000
vertebra 21.007100 11.795500 17.119300 27.991600 52.008900 387.730000
magnetic reconnection 67.358500 53.246100 71.011800 117.312000 207.845000 1553.140000
marmoset neurons 116.085000 97.842400 129.522000 203.693000 366.471000 2804.410000
stag beetle 15.669100 14.915100 25.613000 48.529200 94.083600 748.051000
pawpawsaurus OOM OOM OOM OOM OOM OOM
spathorhynchus OOM OOM OOM OOM OOM OOM
kingsnake OOM OOM OOM OOM OOM OOM
warpx large Ey OOM OOM OOM OOM OOM OOM
warpx large rho OOM OOM OOM OOM OOM OOM
warpx large Ez OOM OOM OOM OOM OOM OOM
warpx large Ex OOM OOM OOM OOM OOM OOM
Nyx particle mass density OOM OOM OOM OOM OOM OOM

Table A4: PPP runtime in seconds on KNL for all 3D datasets. We repeated each evaluation 5 times and report here the best time. OOM
indicates that PPP did not complete computation of the contour tree in any of the 5 tries due to out-of-memory error.



E PPP SPEED-UP FOR 3D DATASETS ON KNL

272 64 32 16 8 1

marschner lobb 0.806815 2.115504 2.102171 2.120891 2.074440 1.0
nucleon 0.929451 2.308235 2.302818 2.018367 2.244072 1.0
silicium 1.406183 2.870179 2.842920 2.759235 2.950653 1.0
neghip 2.005202 5.526812 5.543605 5.192668 4.081839 1.0
fuel 2.612055 6.295780 6.146475 5.085258 4.390683 1.0
tooth 4.281815 10.460096 10.319950 8.375088 5.735757 1.0
shockwave 7.304680 18.482957 17.110788 11.605411 6.926794 1.0
hydrogen atom 5.264002 16.214088 15.261571 10.837976 6.685101 1.0
lobster 5.593504 15.727818 14.051527 10.346503 6.477493 1.0
mri ventricles 9.214097 19.065402 16.318481 11.439582 6.891822 1.0
engine 6.938277 18.256061 15.760678 11.029490 6.668742 1.0
statue leg 7.226787 19.760467 17.156561 11.703015 6.848815 1.0
tacc turbulence 9.731327 23.109522 19.204149 12.391241 7.074813 1.0
aneurism 13.151755 34.158174 25.195752 14.479758 7.663962 1.0
bonsai 9.381466 28.468568 21.875844 13.351174 7.360883 1.0
skull 10.710265 20.813958 17.428433 11.902009 6.996484 1.0
foot 9.891230 21.444472 18.065576 11.995331 7.010211 1.0
mrt angio 13.529686 22.573198 18.851311 12.658554 7.248915 1.0
stent 15.040168 27.609187 21.176151 13.213183 7.390414 1.0
warpx small Ez 21.018358 39.450457 26.067836 14.678741 7.683761 1.0
warpx small rho 22.697175 42.086873 26.738521 14.832762 7.734269 1.0
warpx small Ex 18.697022 35.747164 24.681198 14.226227 7.578187 1.0
warpx small Ey 23.662662 40.748330 26.427431 14.797027 7.680619 1.0
pancreas 17.397050 27.308133 20.846501 12.992297 7.272450 1.0
bunny 20.015273 28.688304 21.709871 13.428739 7.407273 1.0
backpack 18.331431 27.637486 20.825537 13.100715 7.279097 1.0
present 20.531511 28.164133 21.534862 13.384503 7.461730 1.0
neocortical layer 1 axons 18.794877 26.417493 20.451579 12.989378 7.305251 1.0
prone 21.107430 29.729265 22.057423 13.370788 7.418956 1.0
asteroid 26.787509 39.893873 25.998170 14.466344 7.620627 1.0
christmas tree 19.572079 26.626069 20.610166 13.086220 7.312849 1.0
vertebra 18.457093 32.871010 22.648706 13.851655 7.455070 1.0
magnetic reconnection 23.057817 29.169085 21.871576 13.239396 7.472588 1.0
marmoset neurons 24.158246 28.662523 21.651997 13.767827 7.652475 1.0
stag beetle 47.740521 50.153938 29.205911 15.414452 7.950918 1.0
pawpawsaurus — — — — — —
spathorhynchus — — — — — —
kingsnake — — — — — —
warpx large Ey — — — — — —
warpx large rho — — — — — —
warpx large Ez — — — — — —
warpx large Ex — — — — — —
Nyx particle mass density — — — — — —

Table A5: PPP speed-up compared to serial on KNL for all 3D datasets. See Appendix D for the corresponding timings.



F TTK RESULTS FOR 3D DATASETS ON HASWELL

64 32 24 16 8 4 2 1

marschner lobb 0.049862 0.030217 0.021816 0.020424 0.021291 0.028796 0.040681 0.062984
nucleon 0.042875 0.031371 0.021521 0.019456 0.020031 0.023282 0.029632 0.044781
silicium 0.102043 0.095027 0.088266 0.086240 0.040611 0.045389 0.058960 0.097439
neghip 0.060087 0.038009 0.040597 0.039004 0.046466 0.056421 0.077084 0.118688
fuel 0.097933 0.087743 0.085085 0.082077 0.085127 0.092970 0.106507 0.144186
tooth 2.626720 1.544830 1.328990 1.190950 1.227900 1.540450 1.893480 5.271760
shockwave 1.447200 0.969234 1.046470 0.795929 0.792436 0.850987 1.411480 1.711060
hydrogen atom 0.286965 0.261202 0.260882 0.276810 0.290801 0.379583 0.489017 0.897027
lobster 3.843540 2.287700 2.035030 1.843810 1.979520 2.754030 3.591520 5.494350
mri ventricles 17.827900 11.219400 9.730420 9.069210 9.191580 11.388500 14.368400 20.242700
engine 6.107600 3.232240 2.835140 2.598120 2.701860 3.525560 4.711360 6.789390
statue leg 4.236080 2.700060 2.360520 2.062490 3.153440 3.943640 5.647150 8.613430
tacc turbulence 5.014680 3.745910 3.636350 3.657250 5.271280 8.767310 12.792500 21.701800
aneurism 2.153240 2.196500 2.160850 2.197950 2.604890 3.207560 4.602450 8.633830
bonsai 2.779400 2.057730 1.906650 1.864640 2.420320 3.772570 5.308880 8.423000
skull 19.759800 12.478700 10.645100 9.790570 10.379700 14.066000 22.974500 35.141300
foot 8.985310 5.485160 5.023670 4.620460 5.114590 7.657740 9.003580 14.319000
mrt angio 59.381800 36.001600 31.195700 29.119300 31.687900 40.628400 52.898300 71.837000
stent 45.805100 37.771200 35.688400 35.734300 38.835400 51.775200 71.398900 96.321700
warpx small Ez 23.403300 26.716600 26.585500 26.563900 33.289400 47.797600 71.774000 128.230000
warpx small rho 16.450300 18.315400 18.300300 18.181100 24.474100 39.437200 57.300200 89.415300
warpx small Ex 19.844500 22.408400 22.677000 22.319200 26.031200 42.990200 67.780100 127.652000
warpx small Ey 10.581800 12.152500 12.408900 12.826600 20.718100 40.466900 64.301700 124.791000
pancreas 85.582200 61.432200 58.113900 58.978300 69.786700 103.438000 148.792000 206.390000
bunny 159.189000 114.513000 108.009000 108.468000 113.140000 159.588000 209.711000 298.799000
backpack 84.777800 52.132100 47.268200 42.080200 46.355000 72.303500 88.007000 127.822000
present 183.657000 137.897000 130.239000 128.413000 137.205000 159.860000 229.482000 297.514000
neocortical layer
1 axons

151.719000 87.135400 80.580400 68.908500 68.542100 90.822700 115.003000 170.920000

prone 156.111000 92.651400 84.815800 80.490000 100.541000 139.140000 199.069000 300.989000
asteroid 22.478600 20.114100 19.870700 20.637600 25.492800 45.738400 59.076000 94.126300
christmas tree 231.260000 155.274000 138.467000 131.247000 145.541000 198.457000 246.902000 368.184000
vertebra 44.784300 30.756800 30.008600 29.982500 40.847800 65.843900 93.591300 157.115000
magnetic recon-
nection

881.570000 777.465000 756.458000 777.343000 825.301000 934.525000 940.863000 1108.890000

marmoset
neurons

OOM OOM OOM OOM OOM OOM OOM OOM

stag beetle 31.648700 36.864300 37.601900 38.680500 52.992100 76.769800 119.961000 221.407000
pawpawsaurus OOM OOM OOM OOM OOM OOM OOM OOM
spathorhynchus OOM OOM OOM OOM OOM OOM OOM OOM
kingsnake OOM OOM OOM OOM OOM OOM OOM OOM
warpx large Ey OOM OOM OOM OOM OOM OOM OOM OOM
warpx large rho OOM OOM OOM OOM OOM OOM OOM OOM
warpx large Ez OOM OOM OOM OOM OOM OOM OOM OOM
warpx large Ex OOM OOM OOM OOM OOM OOM OOM OOM
Nyx particle
mass density

OOM OOM OOM OOM OOM OOM OOM OOM

Table A6: TTK runtime in seconds on Haswell for all 3D datasets. We repeated each evaluation 5 times and report here the best time. OOM
indicates that TTK did not complete computation of the contour tree in any of the 5 tries due to out-of-memory error. Similar to PPP, we
attempted to process the OOM files on a Cori login node, with 512GB of main memory, to accommodate the larger memory requirements, but
even with OMP STACKSIZE set to 1000M the files did not complete successfully.



G TTK SPEED-UP FOR 3D DATASETS ON HASWELL

64 32 24 16 8 4 2 1

marschner lobb 1.263164 2.084396 2.887055 3.083838 2.958245 2.187233 1.548245 1.0
nucleon 1.044460 1.427460 2.080795 2.301667 2.235585 1.923409 1.511233 1.0
silicium 0.954880 1.025378 1.103921 1.129855 2.399320 2.146740 1.652626 1.0
neghip 1.975269 3.122637 2.923566 3.042962 2.554303 2.103621 1.539721 1.0
fuel 1.472291 1.643276 1.694607 1.756721 1.693777 1.550889 1.353770 1.0
tooth 2.006974 3.412518 3.966742 4.426517 4.293314 3.422221 2.784165 1.0
shockwave 1.182324 1.765373 1.635078 2.149765 2.159241 2.010677 1.212245 1.0
hydrogen atom 3.125911 3.434227 3.438440 3.240587 3.084676 2.363191 1.834347 1.0
lobster 1.429502 2.401692 2.699886 2.979889 2.775597 1.995022 1.529812 1.0
mri ventricles 1.135451 1.804259 2.080352 2.232025 2.202309 1.777468 1.408835 1.0
engine 1.111630 2.100522 2.394728 2.613193 2.512858 1.925762 1.441068 1.0
statue leg 2.033349 3.190088 3.648954 4.176229 2.731439 2.184132 1.525270 1.0
tacc turbulence 4.327654 5.793465 5.968017 5.933912 4.116989 2.475309 1.696447 1.0
aneurism 4.009692 3.930722 3.995571 3.928128 3.314470 2.691713 1.875920 1.0
bonsai 3.030510 4.093346 4.417696 4.517226 3.480118 2.232695 1.586587 1.0
skull 1.778424 2.816103 3.301171 3.589301 3.385580 2.498315 1.529578 1.0
foot 1.593601 2.610498 2.850307 3.099042 2.799638 1.869873 1.590367 1.0
mrt angio 1.209748 1.995384 2.302785 2.466989 2.267017 1.768147 1.358021 1.0
stent 2.102860 2.550136 2.698964 2.695497 2.480255 1.860383 1.349064 1.0
warpx small Ez 5.479142 4.799638 4.823306 4.827228 3.851977 2.682771 1.786580 1.0
warpx small rho 5.435481 4.881974 4.886002 4.918036 3.653466 2.267283 1.560471 1.0
warpx small Ex 6.432614 5.696614 5.629140 5.719381 4.903808 2.969328 1.883326 1.0
warpx small Ey 11.792984 10.268751 10.056572 9.729079 6.023284 3.083780 1.940711 1.0
pancreas 2.411600 3.359639 3.551474 3.499423 2.957440 1.995302 1.387104 1.0
bunny 1.877008 2.609302 2.766427 2.754720 2.640967 1.872315 1.424813 1.0
backpack 1.507730 2.451887 2.704186 3.037581 2.757459 1.767854 1.452407 1.0
present 1.619944 2.157509 2.284370 2.316853 2.168390 1.861091 1.296459 1.0
neocortical layer 1 axons 1.126556 1.961545 2.121111 2.480391 2.493650 1.881908 1.486222 1.0
prone 1.928045 3.248618 3.548737 3.739458 2.993694 2.163210 1.511983 1.0
asteroid 4.187374 4.679618 4.736939 4.560913 3.692270 2.057927 1.593309 1.0
christmas tree 1.592078 2.371189 2.659002 2.805276 2.529761 1.855233 1.491215 1.0
vertebra 3.508261 5.108301 5.235666 5.240223 3.846352 2.386174 1.678735 1.0
magnetic reconnection 1.257858 1.426289 1.465898 1.426513 1.343619 1.186581 1.178588 1.0
marmoset neurons — — — — — — — —
stag beetle 6.995769 6.006000 5.888187 5.723995 4.178113 2.884038 1.845658 1.0
pawpawsaurus — — — — — — — —
spathorhynchus — — — — — — — —
kingsnake — — — — — — — —
warpx large Ey — — — — — — — —
warpx large rho — — — — — — — —
warpx large Ez — — — — — — — —
warpx large Ex — — — — — — — —
Nyx particle mass density — — — — — — — —

Table A7: TTK speed-up compared to serial on Haswell for all 3D datasets. See Appendix F for the corresponding timings.



H PPP SPEED-UP COMPARED TO TTK FOR 3D DATASETS ON HASWELL

64 32 24 16 8 4 2 1

marschner lobb 1.508440 0.998638 0.701400 0.752996 0.742898 0.925438 1.112220 1.584384
nucleon 1.378810 1.166394 0.806076 0.724512 0.828357 0.838717 0.859016 1.223658
silicium 2.939492 3.225033 2.983626 2.676926 1.407607 1.333972 1.360874 1.931011
neghip 1.375398 1.008432 1.080357 0.958866 1.116539 1.078975 1.123852 1.222529
fuel 2.450791 2.389613 2.279436 2.124790 2.097915 1.973355 1.670156 1.688914
tooth 9.834735 6.350530 5.346800 4.682199 3.588043 2.968461 2.318203 3.311553
shockwave 14.876645 10.287678 11.236562 8.343631 6.068307 4.540559 4.444864 2.911526
hydrogen atom 2.621379 2.404821 2.428911 2.489187 1.952851 1.755046 1.373632 1.443214
lobster 8.260029 4.783732 4.174001 3.594515 2.731872 2.432094 1.878341 1.541201
mri ventricles 12.030677 6.912499 5.753832 5.194427 3.679281 2.856609 2.073979 1.440864
engine 9.143565 4.505680 3.829863 3.309682 2.370510 1.972739 1.517136 1.126264
statue leg 7.017618 4.130838 3.505646 2.963833 3.041952 2.362211 1.951270 1.578037
tacc turbulence 5.625623 3.853849 3.593657 3.358264 3.158819 3.163130 2.642483 2.359738
aneurism 4.329635 3.672665 3.561933 3.486906 2.825567 2.085824 1.646637 1.655525
bonsai 4.341056 2.798924 2.518020 2.335804 1.969357 1.839587 1.484105 1.222479
skull 10.198712 5.765458 4.784745 4.153457 3.019303 2.515951 2.395415 1.786334
foot 8.312035 4.643011 4.109543 3.659567 2.693889 2.500470 1.690969 1.351806
mrt angio 10.575452 5.586095 4.700774 4.295319 3.316250 2.702866 2.049369 1.374537
stent 11.618052 8.420752 7.633948 7.367882 5.397014 4.502035 3.498060 2.343702
warpx small Ez 12.559394 11.905316 11.461985 10.801451 8.599712 7.222778 6.047844 5.461965
warpx small rho 9.411519 8.629164 8.358515 7.894323 6.753376 6.429353 5.201779 4.148278
warpx small Ex 9.067170 8.618151 8.361417 7.675710 5.593645 5.571493 4.896592 4.654161
warpx small Ey 5.804990 5.403777 5.304921 5.166558 5.279021 6.055499 5.354950 5.324280
pancreas 10.166499 6.120574 5.628737 5.530443 4.650524 4.398566 3.572857 2.534308
bunny 10.407231 6.405139 5.861994 5.769329 4.204651 3.731700 2.875933 2.064170
backpack 9.339745 5.011690 4.385131 3.784735 2.919503 2.817257 1.980748 1.469612
present 10.922797 6.988992 6.432699 6.146104 4.674118 3.494964 2.911924 1.837482
neocortical layer 1 axons 10.865866 5.535464 4.934954 4.078488 2.847355 2.343189 1.709020 1.296804
prone 8.914312 4.480242 4.005677 3.670432 3.234109 2.804513 2.306402 1.778128
asteroid 5.740722 4.163376 4.022515 4.062856 3.323317 3.538973 2.565933 2.080958
christmas tree 8.249857 4.810551 4.182004 3.878400 3.119562 2.724045 1.965546 1.503620
vertebra 6.572029 3.838497 3.571687 3.360634 3.033448 3.005487 2.361896 2.036722
magnetic reconnection 20.960318 16.223449 15.320389 15.230671 11.388112 8.121079 4.610379 2.811901
marmoset neurons — — — — — — — —
stag beetle 3.258262 3.101124 3.133988 3.155505 2.837505 2.441927 2.057449 1.967083
pawpawsaurus — — — — — — — —
spathorhynchus — — — — — — — —
kingsnake — — — — — — — —
warpx large Ey — — — — — — — —
warpx large rho — — — — — — — —
warpx large Ez — — — — — — — —
warpx large Ex — — — — — — — —
Nyx particle mass density — — — — — — — —

Table A8: PPP speed-up compared to TTK using the same number of threads on on Haswell for all 3D datasets. See Appendix B and F for the
corresponding timings for PPP and TTK, respectively.



cv v0

v2 v1

(a) Case 0

cv v0

v2 v1

(b) Case 1

cv v0

v2 v1

(c) Case 2

cv v0

v2 v1

(d) Case 3

cv v0

v2 v1

(e) Case 4

cv v0

v2 v1

(f) Case 5

cv v0

v2 v1

(g) Case 6

cv v0

v2 v1

(h) Case 7

Fig. 21: Possible quadrilateral-internal connection scenarios for the
upper link. v0–v2 are all edge- and diagonal connected neighbors of
the centre vertex. Bold red lines indicate internal connections between
vertices. A case table (Table A9) contains a bit for each possible vertex
pair indicating whether these vertices belong to the same link compo-
nent.

I IMPLEMENTATION DETAILS FOR COMPUTING MARCHING

CUBES CONNECTIVITY

We identify individual components of the upper (or lower) link, based
on vertex polarities, similar to finding appropriate marching cubes
cases. The polarity of a vertex is determined by its value relative to
the value at the centre vertex: positive if its value is larger than the
centre, negative if smaller.

We compute connected components in the upper link as follows.
First, we add all edge connected neighbors with positive polarity as
separate sets to a disjoint set (union find) data structure. (Neighbors
with negative polarity do not belong to the upper link.) To determine
the number of distinct upper link components, we iterate over the four
quadrilaterals adjacent to the centre vertex to determine if they connect
any upper link components. For quadrilaterals in the 2D case, this is
simple: If all vertices have positive polarity, the two edge-connected
neighbors of the centre vertex belonging to the quadrilateral belong
to the same upper-link component, and we perform a union operation
on their respective sets. If at least one vertex has negative polarity,
then either one of the edge-connected neighbors has negative polarity
and does not belong to the upper link, or the vertex between the edge-
connected neighbors has negative polarity, implying that there is no
connection between the upper link components in this quadrilateral.
After this iteration, the union-find structure will have one set per con-
nected component, and we pick one representative neighbor (e.g., the
neighbor with the lowest index) as the start of a new path.

The determination whether a quadrilateral connects components in
the upper link is easy to make for two-dimensional quadrilaterals, but
we observe that it is also possible to encode it as a case table, which
is useful for implementing three-dimensional marching cubes connec-
tivity. First, we observe that using rotation symmetry it is possible to
restrict our considerations to the quadrilateral whose lower, left vertex
corresponds to the centre vertex and whose upper, left and lower, right
vertices correspond to its edge connected neighbors. We compute the
case index as three-bit integer, where each bit corresponds to the three
non-centre vertices, and each bit is set if the corresponding vertex has
positive polarity. Since for the upper link each quadrilateral contains
at most two neighbor of the centre vertex, it maps the case number to
a single boolean stating whether these neighbors are connected.

Computing the connected components in the lower-link proceeds
in the same way as the upper-link by adding all edge-connected and

Case No v0v1v2 Connected
v0v1 v0v2 v1v2

0 — T T T
1 –+ F F T
2 -+- F T F
3 -++ F F F
4 +– T F F
5 +-+ F F F
6 ++- F F F
7 +++ F F F

Table A9: Example case table for computing the connected compo-
nents in the lower link by iterating over quadrilaterals adjacent to the
centre vertex.

diagonal-connected neighbors of the centre vertex with negative polar-
ity as separate sets to the disjoint set (union find) data structure. During
the subsequent iteration over four quadrilaterals more cases occur that
determine whether two neighbors belong to the same connected com-
ponent. Furthermore, each quadrilateral now contains three neighbors
of the centre vertex. To account for this, we store three bits per case
table entry—one bit for each of the three vertex pairs that are possibly
connected.

We pre-compute this case table (Figure 21 and Table A9) itself by
iterating over all eight possible vertex polarity combinations, using
union find find to determine which vertices are connected within the
quadrilateral. To determine which sets need to be merged, it is suffi-
cient (for the lower-link case) to merge all sets corresponding to ver-
tices of negative polarity connected by a quadrilateral edge. We do not
need to consider internal connections along diagonals, since marching
cubes/marching quadrilateral always separates vertices with negative
polarity. (We note that for the lower link in 2D all neighbors of the
central vertex uniquely determine its connected components, unlike
for the upper link or in the marching cubes case.)

These considerations carry over to constructing the connected com-
ponents for marching cubes, albeit it is more complicated to construct
an appropriate case table. To determine the number of connected com-
ponents in the upper (or lower) link for marching cubes, we start by
adding the eight edge connected (or eighteen edge and face-diagonal
connected) neighbors for consideration to the disjoint set data struc-
ture. We then iterate over the eight cube cells adjacent to the centre
vertex (i.e., having a vertex coinciding with the centre vertex). Each
cube contains three edge connected (or six edge- and diagonal neigh-
bors). We compute the connection configuration case for the cube as
seven bit integer (i.e., an integer where each bit corresponds to a vertex
that is not the centre vertex). The resulting case table contains three
(or fifteen) bit entries, one for each pair of neighbors potentially con-
nected by the cell. For each vertex pair that is marked as connected,
we perform a union of the sets corresponding to the neighbors. After
iterating over all cubes and vertex pair, we chose one representative
vertex as path start. We note that the number of union operation is so
small, that a standard disjoint set implementation without optimiza-
tions (path-compression and union-by-rank) is sufficient.

We use a single case table for all eight-cubes, using rotation sym-
metry to map the configuration such that the centre vertex corresponds
to the “bottom, front, left” vertex and use two tables that map vertex
and edge indices between the configuration of the currently considered
cell and the standard configuration used for the lookup table.

We pre-compute case tables for upper- and lower-link connectivity
for marching cubes. Both for upper- and lower-link, we iterate over
the 27 = 128 possible vertex polarity cases. The centre vertex always
corresponds to the bottom-left-front vertex of the cell, and we assign
polarities to the other vertices according to the case number. For the
upper-link, we create a three-bit case table, one for each pair of edge-
connected neighbors of the centre vertex. For the lower-link, the cen-
tre vertex has six edge- and diagonal-connected neighbors, resulting
in fifteen pairs of possibly connected vertices. To determine what ver-



tices are connected inside the cube, we observe, that marching cubes
cases always separate vertices of positive polarity, and never connect
cell-diagonal vertices. Thus, for the upper link, two vertices of the
cube are connected if and only if a path along the cube edges connects
them that only connects vertices of positive polarity. For the lower
link, two vertices are connected if and only if a path of cube edges
and cube face diagonals connects them that contains only vertices of
negative polarity. We can compute the case table by adding each cube
vertex to a disjoint set data structure. We then iterate over all cube
edges connecting vertices of positive polarity and merge their respec-
tive sets to compute the connectivity of the neighbors in the upper link.
For each pair, the bit in the case table is true if the two vertices belong
to the same set. For the case table for the lower link, we add all cube
edges and cube face diagonals connecting vertices of negative polarity.
Again, the case table for each pair of potentially connected neighbors
is set to true if the vertices belong to the same set.

Finally, we note that for the neighborhood configurations for trian-
gulations of a rectilinear mesh, we could construct a case table that
directly mapped from neighbor polarity to starts of monotone paths.
However, for marching cubes, the number of components in upper (or
lower) link depends on 26 surrounding vertices, making a case table
too large to be efficient. Thus, we use the approach of iterating over
adjacent cells and using a case table only for connections within those
cells, making storage costs more manageable.


	Introduction
	Background
	Data-Parallel Computation
	Contour Trees
	Sweep And Merge Algorithm for Contour Trees
	Topology Graph
	Scaling Sweep and Merge


	New Terminology
	Governing Saddles
	Pseudo-Extrema

	Parallel Peak Pruning for Merge Trees
	Algorithmic Analysis of the Naïve Algorithm

	Optimization with Active Topology Graphs
	Active Working Graph
	Critical Topology Graph
	Active Graph Peak Pruning


	Parallel Combination of Merge Trees
	Algorithmic Analysis of Parallel Merge Phase

	Adaptation to Non-Triangulated Meshes
	PPP for Marching Cubes Connectivity

	Results & Performance Analysis
	Experiment Design
	Evaluation

	Conclusions & Future Work
	Shape and size of the 3D datasets used in the performance evaluation
	PPP results for 3D datasets on Haswell
	PPP Speed-up for 3D datasets on Haswell
	PPP results for 3D datasets on KNL
	PPP Speed-up for 3D datasets on KNL
	TTK Results for 3D Datasets on Haswell
	TTK Speed-up for 3D Datasets on Haswell
	PPP speed-up compared to TTK for 3D Datasets on Haswell
	Implementation Details for Computing Marching Cubes Connectivity

