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Type 2 Inflammation Contributes to Skin Barrier
Dysfunction in Atopic Dermatitis
Lisa A. Beck1, Michael J. Cork2, Masayuki Amagai3,4, Anna De Benedetto1, Kenji Kabashima5,
Jennifer D. Hamilton6 and Ana B. Rossi7

Skin barrier dysfunction, a defining feature of atopic
dermatitis (AD), arises from multiple interacting sys-
tems. In AD, skin inflammation is caused by
hosteenvironment interactions involving keratino-
cytes as well as tissue-resident immune cells such as
type 2 innate lymphoid cells, basophils, mast cells,
and T helper type 2 cells, which produce type 2 cy-
tokines, including IL-4, IL-5, IL-13, and IL-31. Type 2
inflammation broadly impacts the expression of
genes relevant for barrier function, such as intracel-
lular structural proteins, extracellular lipids, and
junctional proteins, and enhances Staphylococcus
aureus skin colonization. Systemic anti‒type 2
inflammation therapies may improve dysfunctional
skin barrier in AD.

JID Innovations (2022);2:100131 doi:10.1016/j.xjidi.2022.100131

INTRODUCTION
Atopic dermatitis (AD) is a chronic pruritic inflammatory skin
disease, whose pathogenesis is mediated by interactions be-
tween skin barrier impairment and an abnormal immune
response featuring enhanced type 2 inflammation (Figure 1).
Interactions between keratinocytes (KCs), innate immune
cells (e.g., type 2 innate lymphoid cells [ILC2s], dendritic
cells, mast cells, basophils, and eosinophils), adaptive

immune cells (T and B cells), and an altered epidermal
microbiome (with reduction of microbial diversity and pre-
dominance of Staphylococcus aureus) all contribute to AD
pathogenesis (De Benedetto et al., 2015; Dillon et al., 2004;
Gittler et al., 2012; Gschwandtner et al., 2013; Jarrett et al.,
2016; Kim et al., 2014; Kong et al., 2012; Mashiko et al.,
2017; Onoue et al., 2009; Oyoshi et al., 2010; Sokol et al.,
2008; Sonkoly et al., 2006).

Type 2 inflammation is characterized by overexpression
of the cytokines IL-4, IL-5, IL-13, and IL-31 (Giustizieri
et al., 2001; Gros et al., 2009; Hamid et al., 1996, 1994;
Hardman et al., 2017; Kim et al., 2014; Leyva-Castillo
et al., 2013; Mashiko et al., 2017; Neill et al., 2010;
Oyoshi et al., 2010; Pivarcsi et al., 2004; Schmitz et al.,
2005; Sokol et al., 2008; Stott et al., 2013). These cyto-
kines, particularly IL-4 and IL-13, act on both structural and
immune cells (Figure 1). IL-4 and IL-13 signaling serves as a
key initiating pathway for type 2 inflammatory diseases,
whereas IL-4 amplifies the allergic inflammation observed
in type 2 inflammatory diseases, including AD, asthma,
allergic rhinitis, food allergy, and eosinophilic esophagitis
(Davidson et al., 2019; Irvine and Mina-Osorio, 2019;
Izuhara et al., 2002).

The functions of IL-4 and IL-13 overlap but are not iden-
tical (Figure 2). IL-4 and, to a lesser extent, IL-13 regulate
class switching and IgE production by plasma cells (Gascan
et al., 1991; Punnonen et al., 1993). IL-4 but not IL-13 pro-
motes the differentiation of T helper (Th) cells from Th0 to
Th2 cells (Gandhi et al., 2016; Paul, 2015; Swain et al.,
1990). Both IL-4 and IL-13 induce different transcriptional
changes in mast cells (McLeod et al., 2015; Nilsson and
Nilsson, 1995) and are associated with fibrotic processes
(Bhogal and Bona, 2008; Elbe-Bürger et al., 2002; Fichtner-
Feigl et al., 2006; Gillery et al., 1992; Jessup et al., 2008;
Kaviratne et al., 2004; Kolodsick et al., 2004; Oh et al., 2011;
Oriente et al., 2000; Postlethwaite et al., 1992; Rankin et al.,
2010; Zheng et al., 2009). They also activate Th0 cells, recruit
inflammatory effector cells, downregulate the expression of
FLG and other skin barrier proteins, and, at least in murine
models, favor S. aureus colonization in inflamed skin (Bao
and Reinhart, 2015; Cho et al., 2001a; Le Floc’h et al.,
2020; Leyva-Castillo et al., 2020; Liang et al., 2011;
Mitamura et al., 2018a, 2018b; Swain et al., 1990). In
addition, IL-4 and IL-13 directly act on sensory neurons,
increasing their sensitivity to several pruritogens and
contributing to the perpetuation of chronic itch in AD (Oetjen
et al., 2017).

In this paper, we review the role of the components rele-
vant to a functional skin barrier and highlight how skin bar-
rier dysfunction promotes the development of type 2
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inflammation and how type 2 inflammation, in turn, affects
skin barrier dysfunction.

THE SKIN BARRIER
The epidermis is the only epithelial surface with two barrier
structures: the stratum corneum (SC), which is unique to the
skin, and tight junctions (TJs), which are present in other
epithelia as well (Elias, 1988; Kubo et al., 2009; Michaels
et al., 1975; Yoshida et al., 2014, 2013). Both the SC and
the TJs limit penetration of and reaction to microbes,

allergens/irritants, and toxins as well as prevent trans-
epidermal water loss (TEWL).

SC

Corneocytes. The SC, the outer layer of the epidermis, is
composed of flattened, anucleated KCs (corneocytes) sur-
rounded by a complex lipid-enriched extracellular matrix
(Figure 3). Corneocytes are analogous to bricks and lipids to
mortar in the original brick and mortar model of the SC (Elias,
1988; Michaels et al., 1975). This concept has since evolved
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into a dynamic model in which lipid composition and
alignment of the SC allow for adaptation to external factors
and are altered in diseases such as AD (Pilgram et al., 2001;
van Smeden and Bouwstra, 2016).

SC protein components. Keratins have both structural and
regulatory functions in the epidermis. The more than 20
different epithelial keratins form specific keratin pairs
composed of type I (lower molecular weight and acidic) and
type II (neutral basic) components (Moll et al., 2008;
Schweizer et al., 2006; Szeverenyi et al., 2008). Keratin pairs
crosslink with other keratin pairs to form keratin filaments,
which interact with other proteins and the cell membrane to
provide structural stability and flexibility to KCs (Candi et al.,
1998; Lee and Coulombe, 2009; Steinert and Marekov,
1995). In the epidermis, keratin (K) 5 and K14 predominate
in the stratum basale, whereas K1 and K10 predominate in
the stratum spinosum and higher layers―the change from
one pair type to another reflects KC differentiation (Fuchs and
Green, 1980; Moll et al., 1982; Reichelt et al., 2001). In
contrast, K6, K16, and K17 are associated with the repair of
an injured epidermis and are upregulated in inflammatory
disorders of the skin, such as AD and psoriasis (Fu et al.,
2014; Kumar et al., 2015; Lessard et al., 2013; Leung et al.,
2020; Moll et al., 2008; Roth et al., 2012).

KCs undergo cornification, marking their differentiation
into corneocytes; the cells become compact owing to keratin
crosslinking, and keratins and other proteins form a cornified
envelope that lines the cell membrane (Bowden et al., 1984;

Candi et al., 1998; Eckert et al., 2005). During cornification,
keratin filaments cross-link to FLG and other proteins lining
the cell membrane (e.g., involucrin and loricrin) (Candi et al.,
1998; Roth et al., 2012; Steinert and Marekov, 1995). Keratin
filaments also connect to cellecell adhesion structures, such
as desmosomes, stabilizing connections between KCs
(Homberg and Magin, 2014; Kouklis et al., 1994; Seltmann
et al., 2013). Under normal conditions, keratin-filled cor-
neocytes swell and expand with exposure to water, which
softens the keratin and allows the SC to bend and stretch
(Bouwstra et al., 2008, 2003).

Keratins have multiple regulatory functions. For example,
K1 downregulates the expression and secretion of the in-
flammatory cytokines IL-18, IL-33, and TSLP as well as
damage-associated molecular patterns such as S100A8 and
S100A9 (Roth et al., 2012). K16 downregulates the expres-
sion of damage-associated molecular patterns and other in-
flammatory molecules involved in the innate immune
response to skin barrier disruption (Lessard et al., 2013).

Keratin expression is dysregulated in AD (Guttman-Yassky
et al., 2019a). K16 expression is increased in suprabasal
epidermis in AD, corresponding with abnormal KC prolifer-
ation (Guttman-Yassky et al., 2019a; Suárez-Fariñas et al.,
2011). In contrast, K1 and K10 expression is downregulated
by IL-4 and IL-13 in AD lesional skin versus in healthy con-
trols, which might contribute to the SC barrier defects seen in
patients with AD and the release of proinflammatory and type
2epromoting alarmins (Dai et al., 2021; Imai et al., 2013;
Totsuka et al., 2017).
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FLG is a key structural protein in KCs. Its precursor pro-FLG
is expressed in the stratum granulosum (SG) layer and is the
major component of keratohyalin granules (Presland et al.,
1997; Resing et al., 1995). During terminal differentiation,
pro-FLG is dephosphorylated and cleaved to generate mul-
tiple FLG monomers (Presland et al., 1997; Resing et al.,
1995; Sandilands et al., 2009).

FLG has multiple functions. It binds to keratin filaments in
the KC cytoskeleton, forming an FLGekeratohyalin complex
that cross-links to the cornified envelope, transforming KCs
into arguably impervious corneocytes (i.e., “bricks”) (Eckhart
et al., 2013; Presland et al., 1997; Sandilands et al., 2009).
FLG degradation by the protease caspase-14 in outer SC
layers produces natural moisturizing factors (NMFs) (see
below) (Hoste et al., 2011). FLG and NMFs are controlled in
a finely balanced process of production, proteolysis, and
inhibition that is crucial to skin barrier structure; hydration;
and function, including pH regulation, microbial ecology,
and possibly even UV protection (Barker et al., 2007;
Denecker et al., 2007; Kawasaki et al., 2012; Palmer et al.,
2006; Sandilands et al., 2007; Smith et al., 2006).

Reduced expression and loss-of-function mutations of FLG
are common in AD (Barker et al., 2007; Baurecht et al.,
2007; Nomura et al., 2008; Palmer et al., 2006; Weidinger
et al., 2008, 2007). Prevalence and types of FLG loss-of-
function mutations vary among populations, with a very
wide variation being reported for patients with AD (Barker
et al., 2007; Baurecht et al., 2007; Brown and McLean,
2012; Nomura et al., 2008; Palmer et al., 2006; Weidinger
et al., 2008, 2007). FLG loss-of-function mutations are
associated with more severe AD (Brown and McLean, 2012,
2009; Brown et al., 2008a; Margolis et al., 2012; Weidinger
et al., 2007), earlier onset of AD, greater risk of allergen
sensitization and other atopic disorders (Brown et al., 2011;
Palmer et al., 2007), and higher incidence of eczema her-
peticum (Gao et al., 2009). FLG loss-of-function mutations
are also associated with mild AD, but the association is
weaker than that seen for severe disease (Brown et al.,
2008b).

Notably, FLG expression may be reduced in patients with
AD without FLG mutations. Type 2 inflammatory mediators,
including IL-4, IL-13, IL-31, IL-33, and TSLP, reduce FLG
expression (Howell et al., 2009, 2007; Kim et al., 2015;
Sehra et al., 2010; Seltmann et al., 2015). This has also been
observed in skin inflammation mediated by Th17 (IL-17),
Th22 (IL-22), and Th1 (IL-1a, IL-1b, and TNF-a) (Archer
et al., 2019; Boniface et al., 2005; Danso et al., 2014;
Gutowska-Owsiak et al., 2012, 2011; Kezic et al., 2012;
Oyoshi et al., 2009; Tan et al., 2017). Repetitive scratching,
detergent use, low humidity, exogenous or endogenous
proteases, air pollution, and topical and oral corticosteroids
can also reduce FLG expression (Danby et al., 2014; Goleva
et al., 2019; Sheu et al., 1997, 1991; Thyssen and Kezic,
2014). FLG has multiple repeats (typically 10‒12) within
the locus (Brown et al., 2012). Copy number variants are
associated with AD in some but not all populations. For
example, in a cohort study in Ireland, reduced copy numbers
were more frequent in patients with AD than in normal
controls (Brown et al., 2012), whereas studies in other pop-
ulations did not find any association between copy number

variation and the risk of AD (Fernandez et al., 2017; Fulton
et al., 2022).

FLG deficiency is associated with reductions in SC struc-
ture, hydration, antimicrobial function, and epithelial buff-
ering capacity in AD and increases in skin pH, percutaneous
absorption, and protease activity (Brauweiler et al., 2013;
Flohr et al., 2010; Kawasaki et al., 2012; Kezic et al., 2008;
Thyssen and Kezic, 2014; Vávrová et al., 2014).
FLG-knockdown KCs have reduced levels of K10, TJ proteins
(zona occludens [ZO]-1, claudin [CLDN]-1, and occludin),
and human b-defensin (hBD)-2; and increased cysteine
proteases, which can degrade TJ proteins (Hönzke et al.,
2016; Wang et al., 2017). Reduction in FLG expression re-
duces the levels of FLG metabolites such as NMFs. This re-
sults in an increase in SC pH, which activates serine
proteases (Elias et al., 2008; Goleva et al., 2019; Wang et al.,
2017) and induces the expression of the proinflammatory
cytokines, IL-1a, IL-1b, and TSLP (Hönzke et al., 2016; Kezic
et al., 2012; Nylander-Lundqvist and Egelrud, 1997; Wood
et al., 1996). Reduced FLG expression is also linked to
increased levels of arachidonic acid and its metabolite
12-hydroxy-eicosatetraenoic acid in KCs, leading to
increased inflammation and impairing late epidermal differ-
entiation (Blunder et al., 2017).

The manifestations of FLG-deficient skin are much more
dramatic when combined with the biological actions of IL-4
and IL-13. For example, in an in vitro study, IL-4 and IL-13
stimulation induced spongiosis and increased epidermal
thickening, skin pH, and permeability in both normal and
FLG-deficient skin equivalents (Hönzke et al., 2016). How-
ever, in FLG-deficient equivalents, IL-4 and IL-13 decreased
the levels of skin barrier proteins (e.g., involucrin and lor-
icrin), TJ proteins (e.g., occludin), and hBD-2 and increased
basal layer proliferation rates and TSLP levels to a greater
extent than in normal skin equivalents. This suggests that the
combination of type 2 immunity and FLG deficiency may
promote AD development more than either alone.

NMFs are composed of FLG degradation products (i.e., free
amino acids, urocanic acid, and pyrrolidine carboxylic acid),
urea, and lactate derived from sweat. Under normal condi-
tions, the decrease in hydration from middle to outer SC
levels promotes FLG detachment from the corneocyte enve-
lope and degradation, forming NMFs (Rawlings and Matts,
2005; Sandilands et al., 2009).

NMFs retain moisture, contributing to barrier function by
promoting epidermal hydration through osmotic gradients
that allow the movement of water into the corneocytes
(Björklund et al., 2014; Kezic et al., 2008). NMFs maintain
and buffer the acidic pH of the SC, which may reduce
colonization by pathogenic bacteria (Kezic et al., 2008; Krien
and Kermici, 2000; Miajlovic et al., 2010). NMFs also pro-
mote epidermal maturation and desquamation (Kezic et al.,
2011). Decreased SC NMF levels are associated with dry
skin and skin diseases such as ichthyosis vulgaris and AD. IL-
4 and IL-13 reduce FLG levels and sweat secretion, which
thereby affect NMF composition and function (Howell et al.,
2009, 2007; Sehra et al., 2010).

Loricrin and involucrin are key structural proteins of the
cornified envelope that anchor keratin filaments, providing
mechanical strength and flexibility to the corneocytes (Candi
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et al., 1998; Roth et al., 2012; Steinert and Marekov, 1995).
Both loricrin and involucrin are highly insoluble in late-stage
KC differentiation, resulting from disulfide and trans-
glutaminase cross-linking within the molecules and to other
proteins in the cell envelope in corneocytes (Hohl et al.,
1991; Rice and Green, 1979; Steinert and Marekov, 1995).
Loricrin is more prominent toward the cytoplasmic surface of
the envelope, whereas involucrin is localized proximate to
the lipid portion of the envelope (Jarnik et al., 2002; Steinert
and Marekov, 1995).

IL-4 and IL-13 downregulate loricrin and involucrin
expression in KCs (Kim et al., 2011, 2008), which may ac-
count for the reduced levels observed in AD. TNF-a reduces
loricrin and involucrin expression, which also explains their
reduced levels in psoriasis (Kim et al., 2011, 2008). Inter-
estingly, silencing FLG expression in normal human KCs
reduced involucrin expression but upregulated the expres-
sion of loricrin and IL-2, IL-4, IL-5, and IL-13 (Dang et al.,
2015).

Proteases have multiple roles in the SC, mediated by both
their direct proteolytic activity and through protease-
activated receptors (PARs) (Figure 3). They influence SC
cohesion, degrade corneodesmosome proteins (desmogleins
and desmocollins) during homeostatic desquamation, regu-
late lipid synthesis by degrading enzymes that process
extracellular lipids, and reduce lipid secretion into the
extracellular matrix by stimulating the type 2 plasminogen
receptor (Borgoño et al., 2007; Brattsand and Egelrud, 1999;
Caubet et al., 2004; Hachem et al., 2006, 2005; Sales et al.,
2010; Watkinson, 1999).

Serine protease activity is increased in both lesional and
nonlesional AD skin (Komatsu et al., 2007; Voegeli et al.,
2009). Increased serine protease activity compromises bar-
rier function by increasing the degradation of corneo-
desmosomes and extracellular lipid-processing enzymes,
reducing ceramide production (a characteristic abnormality
of AD) (Borgoño et al., 2007; Di Nardo et al., 1998; Hachem
et al., 2005, 2003; Imokawa et al., 1991). Serine proteases
and cysteine proteases activate the PAR2 receptor, which
regulates the secretion of lamellar bodies and cornification
(Demerjian et al., 2008; Hachem et al., 2006), and is linked
to increased inflammation, itch, and epidermal barrier
disruption (Briot et al., 2009; Wilson et al., 2013). Both
endogenous and exogenous proteases (e.g., from allergens,
such as cockroach and dust mites, or from bacteria, such as
S. aureus alpha-toxin) activate PAR2 (Ebeling et al., 2007;
Hachem et al., 2006; Jeong et al., 2008; Kato et al., 2009).
PAR2 activation reduces the expression of TJ proteins
(occludin, CLDN-1, and ZO-1) and impairs TJ function, as
assessed by reduced transepithelial electrical resistance
(owing to a diminished barrier to ions) and increased
permeability to small proteins (Nadeau et al., 2018). Thus
both allergens and cutaneous dysbiosis may promote skin
barrier disruption in AD through PAR2-mediated mecha-
nisms. Finally, PAR2 agonists also increase the expression of
IL-4 and IL-13 by mast cells, whereas PAR2 inhibition blocks
IL-4 and IL-13 expression, decreases skin thickening, and
suppresses itching in AD models (Barr et al., 2019). Of in-
terest, Netherton syndrome, a monogenic AD-like syndrome
characterized by the loss of serine protease inhibition due to

a mutation in SPINK5 (which codes for the protease inhibitor
LEKTI), is associated with kallikrein 5‒mediated PAR2 acti-
vation resulting in the production of the proetype 2 cytokine
TSLP by KCs (Briot et al., 2010).

Matrix metalloproteinases (MMPs), which affect tissue
remodeling and inflammatory cell migration into the
epidermis, may also play an important role in AD patho-
genesis (Groneberg et al., 2005; Harper et al., 2010; Purwar
et al., 2008). MMP activity was 10‒24 times greater in saline
wash samples from AD lesional skin than in healthy controls,
which do not normally express MMPs (Harper et al., 2010).
IL-13 induces MMP-9 expression in KCs, and expression of
both MMP-9 and IL-13 is increased in acute AD lesions
(Purwar et al., 2008). MMP-12, which induces inflammatory
cell aggregation, is also upregulated in lesional and nonle-
sional AD skin (Brunner et al., 2017; Pavel et al., 2020; Zhu
et al., 2019).

SC lipid components. Skin barrier lipids are localized in the
extracellular matrix surrounding corneocytes and are
secreted from lamellar bodies before cornification (Figure 3)
(Elias et al., 1998; Menon et al., 1992). By weight, these
lipids include approximately 47% ceramides, 24% choles-
terol, 18% cholesterol esters, and 11% free fatty acids (FFAs)
(Ohno et al., 2015; Rawlings and Matts, 2005; van Smeden
and Bouwstra, 2016). The SC contains several types of
ceramides, many of which have very long fatty acid chains
and are highly hydrophobic (Berdyshev et al., 2018; Rawlings
and Matts, 2005; van Smeden and Bouwstra, 2016).

Lipids form densely packed layers in the central portion of
the SC, becoming less densely packed and more gel-like
closer to the surface (Brancaleon et al., 2001; Pilgram
et al., 1999). Alterations of this packing pattern, resulting
from altered lipid composition and lipid-chain shortening,
are thought to contribute significantly to skin barrier impair-
ment in AD (Berdyshev et al., 2018; Pilgram et al., 2001; van
Smeden and Bouwstra, 2016; van Smeden et al., 2014). Fatty
acid chains are lengthened by elongases (Ewald et al., 2015;
van Smeden and Bouwstra, 2016). The expression of the
elongases ELOVL1, ELOVL3, and ELOVL6 is reduced in
lesional AD skin, resulting in shortened fatty acid chains and
increased skin barrier permeability (Berdyshev et al., 2018;
Danso et al., 2017). The higher proportion of short fatty acids
correlates with changes in lipid organization and skin barrier
function and is associated with AD severity (Janssens et al.,
2012; Li et al., 2017; van Smeden et al., 2014). IL-4 and IL-
13 inhibit KCs expression of ELOVL1, ELOVL3, and
ELOVL6 (Berdyshev et al., 2018; Danso et al., 2017), and IL-4
inhibits ceramide synthesis (Hatano et al., 2005).

Sweat. Sweat is an important component of the skin bar-
rier. Sweat forms a protective layer on the SC surface,
contributing to thermoregulation, moisturizing the skin sur-
face, and regulating water retention (Murota et al., 2015). In
addition to water, electrolytes, lactate, basic nitrogenous
compounds (e.g., urea, ammonia), amino acids, and proteins
(Hiragun et al., 2017), sweat contains antimicrobial peptides
(AMPs) (e.g., dermcidin and cathelicidin [see below]) and
secretory IgA, which protect against infection (Imayama
et al., 1994; Metze et al., 1991; Murakami et al., 2002). TJs
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prevent sweat ducts from leaking sweat contents into the
dermis. CLDN-3 is the most prevalent TJ protein that regu-
lates sweat gland permeability (Yamaga et al., 2018).

Patients with AD may have an impaired ability to sweat
(Takahashi et al., 2013; Yamaga et al., 2018), causing sweat
leakage into the dermis leading to local inflammation and
reducing the beneficial effects of sweating (Shiohara et al.,
2011; Takahashi et al., 2013). Skin dryness and increased
susceptibility to infection caused by decreased sweating at
the skin surface may also worsen AD symptoms (Murota
et al., 2018; Shimoda-Komatsu et al., 2018). Dermal sweat
leakage is due to reduced CLDN-3 expression in AD sweat
ducts (Yamaga et al., 2018). AD exacerbation may also result
from sweat allergy―an IgE-mediated hypersensitivity to
sweat, particularly to fungal (Malassezia) protein antigens
commonly found in sweat (Hiragun et al., 2013; Takahagi
et al., 2018). Sweat glands also express IL-13 receptors,
suggesting a role for type 2 inflammation in sweat regulation
(Akaiwa et al., 2001).

TJs
TJs connect epithelial cells in the SG (Figure 3) (Kubo et al.,
2009; Yoshida et al., 2014, 2013). Unlike desmosomes,
which are structural connectors between KCs, TJs play a more
active role in skin barrier function. The continuous barrier
formed by TJs limits the penetration of allergens, microbes,
and irritants and regulates TEWL (De Benedetto et al., 2011b;
Furuse et al., 2002; Kirschner et al., 2013; Rahn et al., 2017;
Yoshida et al., 2013). In the SG, KCs flatten and form a tet-
rakaidekahedron shape (a 14-sided polygon with eight hex-
agonal and six rectangular sides). A model based on this
shape showed that TJ connections can be maintained by
three SG cells, ensuring that KCs never lose contact with
adjacent KCs during differentiation as KCs move outward
toward the SC (Yokouchi et al., 2016; Yoshida et al., 2013).

TJs contain intracellular and extracellular proteins that
control the movement of water, ions, and solutions between
KCs (Anderson and Van Itallie, 2009; Kubo et al., 2009;
Yoshida et al., 2014, 2013). The transmembrane proteins
found in TJs include occludin, CLDN family members, and
junctional adhesion molecules (Brandner et al., 2002; Ebnet
et al., 2004; Furuse et al., 2002, 1998, 1993; Kirschner
et al., 2010; Liu et al., 2000; Morita et al., 1998; Wang
et al., 2018). These transmembrane proteins connect to a
cytoplasmic plaque complex, composed of ZO proteins (ZO-
1, ZO-2, and ZO-3), cingulin, and other proteins (Brandner
et al., 2002; Citi et al., 1988; Helfrich et al., 2007;
Kirschner et al., 2013; Malminen et al., 2003; Morita et al.,
1998; Pummi et al., 2001). CLDN-1 is critically important
for skin barrier function, first appreciated with the CLDN-1‒
deficient mouse which succumbs during infancy as the
consequence of extensive epidermal water loss (Furuse et al.,
2002).

Reduced CLDN-1 and CLDN-3 levels in human AD skin
are associated with epidermal barrier dysfunction (De
Benedetto et al., 2011a; Yamaga et al., 2018). Reduced
CLDN-3 levels are associated with increased sweat leakage
in patients with AD (Yamaga et al., 2018). In an in vitro study,
reduced CLDN-1 expression enhanced herpes simplex viral
spreading, suggesting a mechanism for the susceptibility of

patients with AD to eczema herpeticum (De Benedetto et al.,
2011b). A number of other CLDNs, including CLDN-4,
CLDN-8, and CLDN-23, have been shown to be reduced in
AD skin lesions (De Benedetto et al., 2011a; Esaki et al.,
2015).
TJs also serve a fence function, separating two biologically

distinct layers of the epidermis, that is, the cornifying KCs in
the upper layer of the SG and the SC, and the stratum spi-
nosum (Figure 3). Although Langerhans cell dendrites do not
usually translocate through TJs in healthy skin, with minor
physical trauma, they do, leading to reorganization of the TJs
to preserve barrier integrity (Figure 3) (Kubo et al., 2009). This
compensatory response prevents TEWL and limits antigen
transit. In contrast, in AD lesional skin, greater numbers of
Langerhans cell dendrites penetrate TJs, increasing their ac-
cess to environmental antigens present on the epidermal
surface (Figure 3) (Yoshida et al., 2014). Of interest, key
innate immune receptors are only expressed on the basilar
side of the epidermis (below the TJs) (Kuo et al., 2013). This
loss of fence function observed in AD skin likely plays a role
in allergen polysensitization, a characteristic of most patients
with AD.

Type 2 inflammation may weaken TJ barrier function in
AD. For example, in FLG-knockdown skin equivalents, IL-4
and IL-13 decreased the expression of occludin (Hönzke
et al., 2016). Furthermore, it is possible that the ratio of IL-
4 to IL-17 may determine the TJ barrier function because
IL-4 blocks the robust barrier-enhancing effects of IL-17A on
KCs (Brewer et al., 2019). In vitro studies with human
epidermal equivalents have shown that IL-4, IL-13, and IL-31
reduce CLDN-1 expression (Gruber et al., 2015).

THE INFLAMMATORY RESPONSE IN AD AND SKIN
BARRIER DISRUPTION
A vicious circle: skin barrier disruption induces type 2
inflammation, and type 2 inflammation increases barrier
disruption
Epidermal damage activates the innate immune response in a
proinflammatory cascade (Figure 4). Skin barrier disruption
permits access to external antigens by Langerhans cells and
dermal dendritic cells, which present antigens to naive T
cells and activate allergen-specific Th2 cells, leading to the
release of the canonical type 2 cytokines, IL-4 and IL-13
(Dillon et al., 2004; Jarrett et al., 2016; Oyoshi et al.,
2010; Sonkoly et al., 2006). In response to barrier disrup-
tion and exposure to S. aureus and allergens, KCs and innate
immune cells release chemokines (e.g., CCL1, CCL2, CCL3,
CCL4, CCL5, CCL11, CCL13, CCL17, CCL18, CCL22,
CCL26, and CCL27) that attract proinflammatory cells (Gros
et al., 2009; Homey et al., 2006; Pivarcsi et al., 2004). Skin
barrier disruption also stimulates KCs to release alarmins
(i.e., proinflammatory type 2 immunity-promoting cytokines
such as TSLP, IL-18, IL-25, and IL-33). In turn, the alarmins
induce ILC2s, Th2 cells, and basophils to release type 2
cytokines (Giustizieri et al., 2001; Gros et al., 2009;
Hardman et al., 2017; Kim et al., 2014; Leyva-Castillo et al.,
2013; Mashiko et al., 2017; Neill et al., 2010; Oyoshi et al.,
2010; Pivarcsi et al., 2004; Schmitz et al., 2005; Sokol et al.,
2008; Stott et al., 2013; Terada et al., 2006; Yoshimoto et al.,
1999; Zedan et al., 2015). In addition, alarmins induce ILC2s
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and dendritic cells to express the costimulatory molecule
OX40 ligand, which binds to OX40 receptors on T cells,
promoting Th2 differentiation (Halim et al., 2018; Ito et al.,
2005).

Type 2 inflammatory cytokines contribute to skin barrier
disruption through multiple pathways (Figure 5). For
example, type 2 inflammatory cytokines inhibit the expres-
sion of epidermal proteins, such as FLG, loricrin, and invo-
lucrin (Amano et al., 2015; Howell et al., 2009, 2007; Hvid
et al., 2011; Kim et al., 2015; Mitamura et al., 2018a; Sehra
et al., 2010; Seltmann et al., 2015) and promote the pro-
duction of short-chain fatty acids (Berdyshev et al., 2018;
Danso et al., 2017). In areas of active AD, type 2 inflam-
mation leads to the recruitment of additional innate immune
effector cells, including eosinophils, basophils, and mast
cells (Figure 4). These effector cells release mediators such as
histamine and major basic protein that not only exacerbate
inflammation but also worsen skin barrier disruption by
downregulating SC structural proteins and disrupting TJs (De
Benedetto et al., 2015; Gschwandtner et al., 2013; Onoue
et al., 2009). In addition, basophils release histamine, lipid
mediators, and type 2 inflammatory cytokines, which further

amplify AD pathogenesis (Kim et al., 2014; Mashiko et al.,
2017; Sokol et al., 2008).

Type 2 inflammation and itchescratch response
In the normal host-protective type 2 immune response,
scratching is an adaptive response to remove ectoparasites
and other irritants or toxins from the skin surface. In contrast,
in AD, scratching induced by pathogenic AD itch can exac-
erbate skin barrier disruption, promote S. aureus coloniza-
tion, and lead to the release of alarmins that enhance type 2
inflammation (Buhl et al., 2020; Hashimoto et al., 2011; Hu
et al., 2021; Imai et al., 2014; Malhotra et al., 2016; Oetjen
et al., 2017; Oyoshi et al., 2010; Wilson et al., 2013). KCs
also play a role in pruritus by releasing TSLP and other itch-
promoting alarmins in response to type 2 inflammatory me-
diators and proteases (Wilson et al., 2013). Type 2 inflam-
matory cytokines and alarmins promote the itchescratch
cycle by activating pruritogenic sensory neurons, which have
IL-4, IL-13, IL-31, IL-33, and TSLP receptors (Cevikbas et al.,
2014; Feld et al., 2016; Liu et al., 2016; Oetjen et al., 2017;
Oh et al., 2013; Sonkoly et al., 2006; Wilson et al., 2013). IL-
4 and IL-13 also sensitize neurons, making them more
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responsive to itch-inducing substances, such as IL-31 and
histamine (Oetjen et al., 2017), and act synergistically to
stimulate acute and chronic itch and scratching behavior in
mouse models (Campion et al., 2019). In addition, PAR2
receptors induce pruritus; activate T cells; increase the
release of inflammatory mediators, including IL-13, TNF-a,
and TSLP; and reduce TJ integrity (Buhl et al., 2020; Henehan
and De Benedetto, 2019).

Skin barrier disruption affects sensory nerve ending posi-
tioning and density in AD (Figure 3) (Takahashi et al., 2019).
Neuron density and branching are greater in AD skin than in
normal skin; these changes are seen to a greater extent in
chronic than in acute AD (Guseva et al., 2020; Sugiura et al.,
1997; Urashima and Mihara, 1998). In normal skin, sensory
nerve endings do not penetrate TJs owing to a pruning pro-
cess mediated by KCs at or near TJs, but in lesional AD skin
and mouse models, sensory neuron fibers penetrate TJs in
areas of epidermal disruption (Takahashi et al., 2019). This is
another example of the loss of the TJ fence function in pa-
tients with AD.

Type 2 inflammation and epidermal hyperplasia
Type 2 inflammatory cytokines induce epidermal hyperpla-
sia, a characteristic histologic feature of disease activity in
chronic AD. Epidermal hyperplasia is evaluated by measuring
epidermal thickness, Ki-67‒positive cells, and S100A8/9 and
K16 expression (Esaki et al., 2016; Guttman-Yassky et al.,
2019a; Hamilton et al., 2014; Ungar et al., 2017). IL-4 and
IL-13 contribute to epidermal hyperplasia through disruptive

effects on the skin barrier by suppressing lipid and structural
protein production and KC differentiation (Gittler et al.,
2012; Guttman-Yassky et al., 2019a; Hamilton et al., 2014;
Howell et al., 2008, 2007; Kim et al., 2008). In a mouse
model of acute AD, basophils were the primary source of IL-4
and IL-13 in the skin (Pellefigues et al., 2021). In this model,
basophils and IL-4 induced epidermal hyperplasia and skin
barrier dysfunction associated with increased numbers of
K10-positive KCs and Ki-67/K14‒positive KCs and increased
FLG expression and KC differentiation (Pellefigues et al.,
2021). IL-22, which is found in AD lesional and nonle-
sional skin, is also a key driver of epidermal proliferation
(Eyerich et al., 2009; Lou et al., 2017; Orfali et al., 2018;
Suárez-Fariñas et al., 2011). IL-4 and IL-13 also promote
fibrosis, leading to dermal thickening and scarring with
increased collagen production, particularly in chronic AD
(Figure 4) (Bhogal and Bona, 2008; Elbe-Bürger et al., 2002;
Fichtner-Feigl et al., 2006; Gillery et al., 1992; Jessup et al.,
2008; Kaviratne et al., 2004; Kolodsick et al., 2004; Oh
et al., 2011; Oriente et al., 2000; Postlethwaite et al., 1992;
Rankin et al., 2010; Zheng et al., 2009). In addition, inhibi-
tion of Notch signaling, which regulates KC differentiation, is
associated with epidermal hyperplasia and enhanced the
expression of TSLP, IL-4, and IL-13 (Dumortier et al., 2010;
Murthy et al., 2012). Histamine binding to histamine 4 re-
ceptors stimulates KC proliferation, which may also
contribute to hyperplasia (Glatzer et al., 2013). The coun-
terbalance between epidermal hyperplasia (or proliferation)
and differentiation (e.g., SC and TJ formation) suggests that
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anything that leads to greater KC proliferation could lead to
barrier dysfunction (Guttman-Yassky et al., 2009; Pellefigues
et al., 2021; Sladek, 2012).

THE SKIN AS AN ANTIMICROBIAL BARRIER
The epidermal surface serves as an antimicrobial barrier
through interactions between the skin surface microbiome
and skin surface components, including AMPs, lipids, NMFs,
pH, innate receptors, and resident antigen-presenting cells as
well as T cells. On healthy skin, the microbiome includes
diverse microorganisms that regulate local immune re-
sponses, control T-regulatory cell function, and inhibit path-
ologic microbes, thereby contributing to the antimicrobial
barrier (Cogen et al., 2010; Grice et al., 2009; Lai et al.,
2010; Naik et al., 2012; Sanford and Gallo, 2013). Its
composition is affected by the integrity and function of
epidermal barrier components, including long-chain unsat-
urated FFAs, AMPs, and NMFs (Baurecht et al., 2018; Braff
et al., 2005; Feuillie et al., 2018; Takigawa et al., 2005).
Commensal bacteria, such as S. hominis, are important for
skin homeostasis and host defense against S. aureus (Cogen
et al., 2010; Nakatsuji et al., 2017). They produce proteins
with antimicrobial activity and induce KCs to produce AMPs,
which limit S. aureus growth (Cogen et al., 2010; Lai et al.,
2010; Nakatsuji et al., 2017).

Dysbiosis is a feature of AD, with reduced microbial di-
versity compared with normal skin, and characterized by a
predominance of S. aureus (Fyhrquist et al., 2019; Higaki
et al., 1999; Kong et al., 2012; Ricci et al., 2003; Simpson
et al., 2018; Totté et al., 2016). Analyses have shown that
the skin surface of 55e90% of patients with AD is colonized
with S. aureus, versus 3e20% of healthy controls (Fyhrquist
et al., 2019; Higaki et al., 1999; Masenga et al., 1990; Park
et al., 2013; Pascolini et al., 2011; Ricci et al., 2003).
Reduced microbial diversity in patients with S. aureus skin
colonization may result from enhanced type 2 inflammation
and alterations in skin barrier function (Kong et al., 2012;
Simpson et al., 2018). Interestingly, one study showed that
infants’ skin was colonized with S. aureus before their AD
was diagnosed (Meylan et al., 2017). This suggests that dys-
biosis may contribute to AD onset or amplification of disease
activity (Kobayashi et al., 2015). Interestingly, patients with
AD and S. aureus colonization have more severe disease,
with greater type 2 deviation, allergen sensitization, and skin
barrier dysfunction (Byrd et al., 2017; Fyhrquist et al., 2019;
Kong et al., 2012; Simpson et al., 2018). S. aureus toxins can
induce mast cell degranulation, leading to increased itch,
inflammation, and KC death, which is made worse by
coexposure with IL-4 and IL-13 (Brauweiler et al., 2014; Lin
et al., 2003; Nakamura et al., 2013; Sonkoly et al., 2006).
S. aureus‒derived superantigens disrupt epithelial barrier
function and enhance epithelial chemokine expression,
which may promote greater leukocyte infiltration (Lin et al.,
2003; Savinko et al., 2005; Schlievert et al., 2019). What
remains unclear is what initiates the abnormalities commonly
observed in patients with AD and the causeeeffect relation-
ships between dysbiosis, epidermal barrier defects, and type
2 inflammation.

AMPs inhibit the growth of microbial pathogens and sup-
port epidermal surface colonization by nonpathogenic

commensal microbes (Cogen et al., 2010; Lai et al., 2010;
Nakatsuji et al., 2017; Ong et al., 2002). AMPs are produced
by KCs and sweat gland cells in response to colonization/
infection, inflammation, or barrier disruption (Braff et al.,
2005; Lee et al., 2008; Murakami et al., 2002). The most
commonly studied AMPs are the cathelicidin LL-37, and
hBD-2 and hBD-3, which together inhibit the growth of
S. aureus. These are typically increased with inflammation;
however, IL-4 and IL-13 inhibit their production (Hönzke
et al., 2016; Nomura et al., 2003; Ong et al., 2002). AMPs
are also commonly produced by activation of innate immune
receptors, such as toll-like receptors (TLRs), present on
epidermal cells. TLR2 is important for responding to S. aureus
but is downregulated in patients with AD (Kuo et al., 2013).
AMPs have additional roles in skin barrier maintenance. For
example, hBD-3 and TLR2 agonists have also been shown to
increase the expression of CLDNs and other factors that
regulate TJ function (Kiatsurayanon et al., 2014; Kuo et al.,
2013).

Extracellular matrix lipids (e.g., FFAs and sphingomyelin)
contribute to the antimicrobial barrier by limiting bacterial
growth, maintaining acidic pH, and activating AMPs
(Baurecht et al., 2018; Bibel et al., 1992; Jiang et al., 2013;
Miller et al., 1988; Nakatsuji et al., 2010; Takigawa et al.,
2005). Permeability barrier impairment due to increased
surface pH and reduced levels of long-chain FFAs and
sphingosine also impairs epidermal antimicrobial function
(Bibel et al., 1992; Hülpüsch et al., 2020; Miller et al., 1988;
Zainal et al., 2020).

There is tremendous cross-talk between type 2 inflamma-
tion, S. aureus colonization, and epidermal barrier dysfunc-
tion (Figure 4). For example, patients with severe AD
frequently have S. aureus strains on their skin that produce
enterotoxins, proteases, lipases, and superantigens that
enhance B-cell Ig class switching to IgE, increase epidermal
expression of type 2 inflammation‒promoting alarmins and
cytokines, and disrupt skin barrier function (Brauweiler et al.,
2019, 2017, 2013; Fyhrquist et al., 2019; Gould et al., 2007;
Leung et al., 1993; Nakatsuji et al., 2017, 2016; Williams
et al., 2017). Even toxin-deficient S. aureus strains have
been shown to disrupt TJs (Ohnemus et al., 2008), supporting
the notion that S. aureus colonization may contribute to
barrier impairment and type 2 polarization in AD.

In contrast, type 2 inflammation enhances the expression
of S. aureus adhesins, such as fibrinogen and fibronectin (Cho
et al., 2001a, 2001b). In parallel, type 2 cytokines, particu-
larly IL-4 and IL-13, inhibit the production of AMPs and FFAs
from epidermal cells in patients with AD and increase skin
surface pH (Berdyshev et al., 2018; Danso et al., 2017;
Hönzke et al., 2016; Nomura et al., 2003; Ong et al., 2002),
further evidence that IL-4 and IL-13 enhance susceptibility to
S. aureus colonization and thereby disturb barrier integrity.

THERAPEUTIC INTERVENTIONS TARGETING THE SKIN
BARRIER
Many topical and systemic therapies have been evaluated
for their ability to improve skin barrier function in
patients with AD. Topical medications include topical corti-
costeroids (TCSs), topical calcineurin inhibitors (TCIs),
phosphodiesterase-4 (PDE-4) inhibitors, and Jak inhibitors
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(Jakis) (Eichenfield et al., 2014; Katoh et al., 2020; Singh
et al., 2020; Wollenberg et al., 2018a).

Topical medications
Topical medications, including TCS, TCI, the PDE-4 inhibitor
crisaborole, and the Jakis delgocitinib and ruxolitinib, have
been shown to improve AD lesional severity in clinical trials
(Amano et al., 2015; Bissonnette et al., 2019a; Dähnhardt-
Pfeiffer et al., 2013; Danby et al., 2014; Jensen et al., 2013,
2012, 2009; Nakagawa et al., 2020, 2019; Papp et al., 2021).

Topical medications differ in their effects on skin barrier
function and type 2 inflammation. The TCIs pimecrolimus
and tacrolimus have been shown to improve AD skin barrier
structure and function at levels similar to or exceeding those
observed with TCS (Dähnhardt-Pfeiffer et al., 2013; Danby
et al., 2014; Jensen et al., 2013, 2012, 2011, 2009;
Xhauflaire-Uhoda et al., 2007). In adults with mild-to-
moderate AD, both TCS and pimecrolimus improved SC
hydration; TEWL; epidermal differentiation; the levels of
loricrin, involucrin, K5, K10, and K14; and epidermal
hyperproliferation markers (e.g., K16) (Jensen et al., 2013,
2012, 2011). In contrast, TCS downregulated the expression
of inflammatory biomarkers, involucrin, AMPs, hBDs, and
lipid metabolism enzymes, and disrupted SC barrier struc-
ture, including lamellar body extrusion and lipid bilayer
formation. In contrast, TCIs normalized these structures
(Jensen et al., 2013, 2012, 2011). In similar studies, tacroli-
mus significantly improved multiple measures of skin barrier
function and structure versus TCS in patients with quiescent
(Danby et al., 2014) and/or moderate (Dähnhardt-Pfeiffer
et al., 2013; Xhauflaire-Uhoda et al., 2007) AD.

In an intrapatient randomized double-blinded trial in 40
adults with mild-to-moderate AD, the PDE-4 inhibitor crisa-
borole significantly improved lesional skin barrier function
compared with vehicle, as assessed by TEWL and immuno-
histochemistry, and modulated inflammatory and skin bar-
rier‒related biomarkers, including CLDN-8 and K16, which
correlated with improved barrier function and lesional scores
(Bissonnette et al., 2019a; Paller et al., 2016).

The topical pan-Jaki delgocitinib targets Jak1, Jak2, Jak3,
and tyrosine kinase (TYK) 2. In mouse models of AD, del-
gocitinib upregulated keratin and loricrin expression that had
been downregulated by IL-4 and IL-13, improved skin barrier
function (as assessed by TEWL), and increased NMF levels in
KC cultures (Amano et al., 2015). Delgocitinib showed no
effect on CLDN-1 and CLDN-4 staining versus vehicle,
whereas TCS significantly decreased CLDN staining and
caused significant skin atrophy versus delgocitinib (Anagawa-
Nakamura et al., 2020).

Systemic medications
Conventional systemic immunosuppressive agents, such as
corticosteroids, cyclosporine A, methotrexate, mycopheno-
late mofetil, and azathioprine, broadly target inflammation,
but their use as treatments for AD is limited by safety con-
cerns and the need to monitor for toxicities (Eichenfield et al.,
2017; Katoh et al., 2020; Wollenberg et al., 2018b). To date,
there is limited evidence that these treatments improve the
skin barrier.

An increased understanding of AD pathogenesis has led to
the development of systemic treatments specifically targeting

type 2 inflammatory pathways. Data on their effects on skin
barrier structure and/or function are available for the oral
Jakis gusacitinib and tofacitinib and the mAbs tralokinumab,
fezakinumab, GBR830, and dupilumab.

Two studies evaluated the effects of Jaki on skin barrier. A
randomized, placebo-controlled, double-blind phase 1b trial
evaluated oral gusacitinib (Jak1/2/3, TYK2, and spleen TYK
inhibitor) in patients with moderate-to-severe AD
(Bissonnette et al., 2019b; Pavel et al., 2019). On the basis of
transcriptomic and immunohistochemistry analyses, gusaci-
tinib downregulated serum and skin biomarkers for type 1,
type 2, Th22, and Th17 inflammatory pathways; reduced
epidermal hyperplasia, K16 expression, and inflammatory
cell infiltrates; increased FLG expression; and shifted the
gene expression profile of lesional skin toward that of non-
lesional skin (Bissonnette et al., 2019b; Pavel et al., 2019). In
a three-dimensional in vitro skin model in which IL-4 and IL-
13 were used to induce AD-like changes, tofacitinib pre-
vented AD-like histologic changes, maintained FLG expres-
sion, decreased the phosphorylation of STAT 3 and 6,
upregulated the expression of KC differentiation genes
(including desmocollin 1, FLG, involucrin, loricrin, and K1),
and downregulated the expression of genes associated with
AD-related immune responses (Clarysse et al., 2019).

Four mAbs have been evaluated for their effects on the skin
barrier in patients with AD (fezakinumab, GBR 830, tralo-
kinumab, and dupilumab); of these, fezakinumab and GBR
830 are currently investigational. In a randomized, placebo-
controlled, double-blinded, phase 2a clinical trial in adults
with moderate-to-severe AD, fezakinumab (a mAb directed
against IL-22) administered as intravenous monotherapy
improved lesional skin gene expression profiles and
epidermal markers for inflammation and epidermal prolifer-
ation in patients with high levels of IL-22 skin expression at
baseline but not in those with low baseline IL-22 levels
(Brunner et al., 2019). In a randomized, double-blind, pla-
cebo-controlled trial in adults with moderate-to-severe AD,
GBR 830 (an anti-OX40 mAb) administered intravenously
significantly reduced OX40-positive T-cell and OX40
ligandþ dendritic cell counts and significantly improved
measures of epidermal hyperplasia, including reductions in
epidermal thickness, K16 mRNA expression, and Ki-67þ cell
counts, compared with placebo (Guttman-Yassky et al.,
2019b).

Tralokinumab is a mAb directed against IL-13 that has been
approved in Europe for the treatment of adults with
moderate-to-severe AD who are candidates for systemic
therapy (European Medicines Agency, 2021a). In a phase 3
trial in adults with moderate-to-severe AD, tralokinumab
significantly reduced the levels of S. aureus colonization (on
the basis of routine culture techniques) on lesional skin
compared with placebo (Wollenberg et al., 2021).

Dupilumab, a fully human mAb that inhibits the signaling
of both IL-4 and IL-13 by blocking their shared receptor
component (IL-4Ra), is approved for AD, asthma, and
chronic rhinosinusitis with nasal polyps, which are diseases
driven by type 2 inflammation (European Medicines Agency;
2021b; Pharmaceuticals and Medical Devices Agency, 2021;
Regeneron, 2021). Dupilumab significantly improved ab-
normalities in skin barrier gene expression and epidermal
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proliferation in patients with AD (Beck et al., 2014; Guttman-
Yassky et al., 2019a; Hamilton et al., 2014; Rohner et al.,
2021). In biopsy data from adult patients with moderate-to-
severe AD in two randomized, placebo-controlled, double-
blinded phase 1 studies, dupilumab significantly reduced the
expression of inflammatory biomarkers and epidermal pro-
liferation biomarkers (e.g., K6b, K16, Ki-67); upregulated the
expression of epidermal barrier structure and function
markers (e.g., MATN4, CLDN8, ELN, CLDN11); and shifted
AD-related gene expression in lesional skin toward that
resembling nonlesional skin (Beck et al., 2014; Hamilton
et al., 2014). Similarly, in a randomized, placebo-
controlled, double-blinded phase 2 study in adult patients
with moderate-to-severe AD, dupilumab significantly
reduced the expression of genes important in type 2 inflam-
mation (e.g., IL-13, IL-31), epidermal hyperplasia (e.g., Ki-67,
K16), T cells, and dendritic cells; reduced Th17 and Th22
activity; and shifted the expression profile of the AD-related
transcriptome of lesional skin toward that of nonlesional
skin (Guttman-Yassky et al., 2019a). Dupilumab also
increased the expression of epidermal differentiation factors,
barrier components, inflammatory proteases (e.g., MMP12),
FLG, loricrin, CLDN-8 and CLDN-23, and ELOVL3; signifi-
cantly reduced epidermal hyperplasia in lesional skin
(Figure 6); significantly decreased epidermal S. aureus
abundance (qPCR); and normalized microbial diversity in
patients with AD (Bieber, 2020; Callewaert et al., 2020;
Guttman-Yassky et al., 2019a). A retrospective study in a
tertiary treatment center comparing skin biopsies between

before and after 6e8 weeks of dupilumab treatment in pa-
tients with severe AD reported substantial reductions in the
expression of AD-related inflammatory cytokines and alar-
mins and increased expression of FLG, LEKTI1, hBD-3, and
LL-37 (Rohner et al., 2021). In an open-label transcriptomic
analysis of tape strips and biopsies in adult patients with
moderate-to-severe AD, biomarkers associated with healthy
skin barrier that were decreased at baseline (e.g., keratins,
FLG, periplakin, and lipid metabolism markers) showed
increased expression after 16 weeks of treatment with dupi-
lumab. Improvement in several of these skin barrier markers
was significantly correlated with improvement in clinical
signs (Mikhaylov et al., 2021). Finally, transcriptomic data
from a European registry study (TREATgermany [German
National Clinical Registry for Patients With Moderate-to-
severe Atopic Dermatitis]) of adults with moderate-to-severe
AD showed that dupilumab treatment for 12 weeks led to a
stronger normalization of skin barrier‒related genes than
cyclosporin (Möbus et al., 2021). In this observational anal-
ysis of a nonrandomized cohort of patients, dupilumab
treatment decreased the expression of type 2‒related che-
mokines (e.g., CCL13, CCL17, CCL18, and CCL22) and
normalized the expression of barrier function‒related
markers (e.g., CLDN8, ELOVL3, FLG, K1, K10, and loricrin
gene LOR) (Möbus et al., 2021). In contrast, cyclosporine
resulted in stronger improvement in the expression of certain
KC differentiation markers (e.g., K16, K6A, P13, and LCE3A)
and some genes related to immune pathways (e.g., IL2RA,
IL9R, CXCL3, CTLA4, OX40-R/OX40, S100A8, and S100A9)

Figure 6. Histologic changes observed with dupilumab treatment. Lesional skin samples taken from AD subjects before and 16 weeks after treatment with

placebo or dupilumab (300 mg subcutaneously every 2 weeks) were stained with H&E. These two representative cases are notable for epidermal

hyperplasia, spongiosis with elongated rete ridges, and a disordered basket-weave pattern to the SC layers in the placebo (baseline and 16 weeks) and

dupilumab (baseline) images. After dupilumab treatment (16 weeks), the epidermis is no longer hyperplastic or spongiotic, rete ridges have normalized, and the

SC is compact. In addition, these changes are seen in the context of reduced inflammatory perivascular infiltrates. Images were provided with permission from

Guttman-Yassky et al. (2019a), courtesy of Emma Guttman-Yassky, Center for Excellence in Eczema, Department of Dermatology, Icahn School of Medicine at

Mount Sinai (New York, NY). AD, atopic dermatitis; SC, stratum corneum.
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and the Th17/IL-23 axis (e.g., IL-22, IL-23A/p19, IL-12B/p40,
and P13/elafin).

CONCLUSIONS
Skin barrier function depends on multiple interacting systems
that affect structural and functional components of the skin,
including the SC and TJs, type 2 inflammatory pathways,
cellular and extracellular components of the epithelium, and
interactions with the microbiome and other environmental
factors. Skin barrier dysfunction in AD is driven by genetic
predisposition, environmental factors, and inflammation. It
has been postulated that the rise in allergic diseases
(including AD) in industrialized countries may be due to
substances present in modern urban environments that can
damage epithelial barriers, such as detergents and their ad-
ditives, emulsifiers in food, and various pollutants (Akdis,
2021). The type 2 inflammatory cytokines IL-4 and IL-13
play an important role in the disruption of skin barrier
function, affecting multiple components of the skin barrier
and at the same time being induced by barrier disruption
(Figure 6). Targeting type 2 cytokines in AD has a broad
range of beneficial effects on the components of the skin
barrier, including lipids, proteins, skin pH, corneocyte
structure, TJs, sweat glands, and the microbiome, reinforcing
the notion that AD is a systemic type 2 inflammatory disease.
Further research is needed to confirm to what extent type 2‒
targeted therapies can improve skin barrier function and
what role this barrier repair plays in the clinical improvement
seen in AD.
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biomic "ménage à trois" of atopic dermatitis. J Invest Dermatol 2020;140:
15e7.

Bissonnette R, Maari C, Forman S, Bhatia N, Lee M, Fowler J, et al. The oral
Janus kinase/spleen tyrosine kinase inhibitor ASN002 demonstrates effi-
cacy and improves associated systemic inflammation in patients with
moderate-to-severe atopic dermatitis: results from a randomized double-
blind placebo-controlled study. Br J Dermatol 2019b;181:733e42.

LA Beck et al.
Type 2 Inflammation and Skin Barrier in AD

JID Innovations (2022), Volume 212



Bissonnette R, Pavel AB, Diaz A, Werth JL, Zang C, Vranic I, et al. Crisaborole
and atopic dermatitis skin biomarkers: an intrapatient randomized trial.
J Allergy Clin Immunol 2019a;144:1274e89.

Björklund S, Andersson JM, Pham QD, Nowacka A, Topgaard D, Sparr E.
Stratum corneum molecular mobility in the presence of natural moistur-
izers. Soft Matter 2014;10:4535e46.
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Suárez-Fariñas M, Dhingra N, Gittler J, Shemer A, Cardinale I, de Guzman
Strong C, et al. Intrinsic atopic dermatitis shows similar Th2 and higher
Th17 immune activation compared with extrinsic atopic dermatitis.
J Allergy Clin Immunol 2013;132:361e70.
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