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Abstract

A numerical limit analysis model for masonry walls subject to in-plane load-

ing is posed as a discontinuity layout optimization (DLO) problem, with the

masonry convenientlymodeled using a smeared continuum (“macromodeling”)

approach and a homogenized yield surface. Unlike finite element limit analysis,

DLO is formulated entirely in terms of discontinuities and can produce accu-

rate solutions for problems involving singularities naturally, without the need

for mesh refinement. In the homogenized model presented, masonry joints are

reduced to interfaces, with sliding governed by an associative friction flow rule

and blocks are assumed to be infinitely resistant. Themodel takes account of the

interlock ratio of the masonry blocks, their aspect ratio and the cohesion and

coefficient of friction of interfaces in both the vertical and horizontal directions.

Results from the proposed model are compared with those from the literature,

showing that complex failure mechanisms can be identified and that safe esti-

mates of load carrying capacity can be obtained. Finally, to demonstrate the

utility of the proposed modeling approach, it is applied to more complex prob-

lems involving interactions with other elements, such as voussoir arches and

weak underlying soil layers.

KEYWORD S

discontinuity layout optimization, homogenization, limit analysis, masonry

1 INTRODUCTION

Limit analysis provides a powerfulmeans of establishing the load carrying capacity of awide range of solids and structures.

When applied to masonry structures, discrete and smeared continuum idealizations are possible. Discrete (or “micro-

modeling”) idealizations, in which individual masonry units and joints are modeled explicitly, have the advantage of

being capable of faithfully representing detailed modes of response. However, explicitly modeling the large numbers of

individual masonry units in a large construction can be computationally expensive. Continuum (or “macromodeling”)

idealizations overcome this issue, with homogenization previously used to represent the behavior of masonry walls under

in-plane and out-of-plane loading conditions (e.g., by de Buhan and de Felice1 and Cecchi et al.,2 respectively).

However, finite element limit analysis formulations, whether designed to produce lower bound3-7 or upper

bound8-11 solutions, have been found to encounter difficulties resolving the highly discontinuous modes of response

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the

original work is properly cited.
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2 VALENTINO et al.

encountered at failure, with tailored meshes, adaptive mesh refinement or other techniques required to overcome

this. Discontinuity layout optimization (DLO) provides an alternative to upper bound finite element limit analy-

sis formulations and has the benefit of allowing highly discontinuous modes of response to be modeled without

difficulty. In the case of masonry, when used in conjunction with a homogenized yield surface, the DLO model-

ing approach described herein involves adopting a homogenized representation of the composite masonry mate-

rial, but with the inherently discontinuous modes of response that occur at failure successfully captured. DLO

has previously been used to model a range of in-plane,12-14 out-of-plane,15 and 3D16 limit analysis problems; here

the focus will be on in-plane problems, though the methodology developed is potentially transferable to other

cases.

For the masonry wall problems considered here, joints are for simplicity reduced to interfaces and modeled using a

Mohr–Coulomb failure criterion, with a prescribed angle of friction and low or zero cohesion, together with a no ten-

sion rocking criterion. Masonry units are assumed to be rigid. The aforementioned assumptions have been made widely

by previous workers in the context of rigid block limit analysis, considering either associative17 or non-associative18,19

friction models at interfaces. Of the non-associative solutions previously reported in the literature (e.g., References

20-22), it has generally been found that as the number of masonry units increases, the difference between associa-

tive and non-associative solutions reduces. When using homogenization theory the representative volume element

(RVE) employed is assumed to be very small in comparison to the dimensions of the wall, such that a given mod-

eled wall can be assumed to comprise an infinite number of infinitely small masonry units. As this can be expected

to reduce the influence of the flow rule, and in the interests of computational efficiency, an associative flow rule

has therefore been adopted in this article. Various homogenization formulations for masonry have been proposed;23

here the approach proposed by de Buhan and de Felice1 is adopted, but extended to enable the interlock ratio, 𝜌, to

be varied, and to allow the Mohr–Coulomb material properties to be changed (specifically, the cohesion, c, and the

coefficient of friction, 𝜇, are allowed to be different in the vertical and horizontal directions). By combining homoge-

nization with DLO the aim of the present work is to provide a general and systematic means of identifying arbitrary

in-plane failure mechanisms in masonry structures, overcoming the mesh sensitivity associated with finite element

limit analysis-based approaches (e.g., the rigid finite element model proposed by Munro and da Fonseca,9 previously

applied to various out-of-plane masonry wall problems,24,25 is known to provide nonconservative results26), and the

limited search space associated with meta heuristic optimization formulations that involve adjustment of the geome-

tries of predefined macro-block failure mechanism topologies, recently applied to the analysis of various masonry

constructions.27,28 Unlike finite element mesh subdivision, DLO is not sensitive to mesh orientation as it considers an

array of overlapping discontinuity lines oriented in different directions. However, as with all other methods, compu-

tational time is sensitive to model refinement. The proposed formulation also appears to be more generally applicable

than a recently proposed linear programming (LP) formulation that allows a range of failure plane orientations to be

considered.29

The article is structured as follows: in Section 2, an extended homogenizedmacroscopic strength criterion formasonry

is derived; in Section 3, the proposed homogenized DLO formulation for masonry structures is presented; in Section 4,

results from the DLO model developed are compared with analytical solutions and with discretized solutions obtained

by Orduña and Lourenço,22 Ferris and Tin-Loi,21 and Gilbert et al,20 with the homogenized DLOmodel then applied to a

structure also involving voussoir arches and to a settled facade wall problem previously studied by Pepe et al.30 and Tiberti

et al..31 Finally, conclusions are drawn in Section 5.

2 MACROSCOPIC STRENGTH CRITERION FOR MASONRY WALLS

2.1 Homogenization theory for limit analysis problems

The fundamentals of the homogenization method for periodic media have been described by Suquet32 and de Buhan.33

For masonry structures, assumed to comprise infinitely strong blocks with joints reduced to interfaces, a popular homog-

enized model was developed by de Buhan and de Felice,1 and more recently Cecchi et al.2 developed this theory for

in-plane and out-of-plane behavior based on Reissner homogenized plates.

Here the starting point is the model developed by de Buhan and de Felice,1 but with additional parameters then

included. A unit cell is identified as a parallelogram spanning four blocks within a wall with wall aspect ratio rw = w∕h,

as shown in Figure 1. Local coordinate axes e1 and e2 are indicated and the blocks in the unit cell are denoted A1, A2,
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VALENTINO et al. 3

(A) (B)

F IGURE 1 Homogenizedmasonry representation: (A) Unit cell (representative volume element, RVE)within awall; (B) unit cell details

A3, A4. In the kinematic approach the potential failure mechanisms that can occur within this unit cell parallelogram are

clearly of interest. The properties of the mortar are the cohesion, c, and angle of friction, 𝜙, defined cv and 𝜙v for vertical

joints and ch and 𝜙h for horizontal joints. Other parameters are the masonry unit (block) aspect ratio, rb = wb∕hb, and

the interlock ratio, 𝜌 (0 < 𝜌 < 1). Note that for convenience the terms “strain” and “displacement” are used herein as

shorthand for “strain rate” and “displacement rate”, respectively.

Homogenization theory is based on oscillating functions that prescribe that the macroscopic stress and strain ten-

sors must be the averages of the corresponding microscopic quantities. The theory is based on the assumption that the

size of the unit cell, or RVE, is very small compared to the overall dimensions of the bodies, in these case walls, under

consideration.

According to the yield design homogenization method,34 the macroscopic criterion of a periodic composite material

is obtained from solving an auxiliary yield design problem associated with the representative unit cell  of the composite
material. Denoting Ghom to be the macroscopic strength domain and F (.) to be the associated yield strength function,

their definition reads:

𝚺 ∈ Ghom
⇔ F (𝚺) ≤ 0 ⇔

{
∃𝝈 statically admissible with 𝚺,

∀x ∈ , f (𝝈 (x)) ≤ 0,
(1)

where f (.) is the yield strength function at any point of . 𝚺 is equal to the volume averaged value of 𝝈 over the unit cell:

𝚺 =
1

|| ∫
𝝈 d. (2)

Taking advantage of the virtual work principle, a dualization of the equilibrium equations may be performed, which

allows the macroscopic strength domain to be redefined as follows; for a given macroscopic strain tensorD,Ghom may be

defined as:

Ghom =
⋂
D

{
𝚺 | 𝚺 ∶ D ≤ Πhom (D)

}
(3)

with

Πhom (D) = min
u ka D

{
⟨𝜋⟩ = 1

||
(
∫

𝜋 (d) d + ∫Sdisc 𝜋 (U,n) d
)}

, (4)

whereU is a displacement jumpacross a discontinuity surfaceSdisc,d is amicroscopic strain tensor andu is a displacement

field, kinematically admissible with the macroscopic strain tensor, of the form:

u(x) = D ⋅ x + uper(x) + rigid body motion, (5)
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4 VALENTINO et al.

where uper(x) is a periodic fluctuation. As denoted in de Buhan and de Felice,1 the functional ⟨𝜋⟩, the average of the
support functions, is usually denoted maximum resisting work.

2.2 Analytical kinematic relations for unit cell

In periodic homogenization theory adjacent cells must fit together in their common deformed state. This means that at

every vertex of the periodic cell the strains must be compatible and the stress vectors must be equal and opposite. In other

words, for an admissible strain field the displacement fields must be strain periodic. In the kinematic approach described

here the masonry blocks possess infinite strength, that is, are rigid, with mortar joints satisfying the Mohr–Coulomb

criteria and obeying the following displacement field u(x1, x2):

u(x1, x2) = D ⋅ x +𝛀 ⋅ x + v(x1, x2), (6)

whereD is a symmetric macroscopic strain matrix,𝛀 is a rotation matrix, v(x1, x2) is a periodic displacement field, and x

contains the Cartesian coordinates, where:

x =

[
x1

x2

]
, D =

[
D11 D12

D12 D22

]
, 𝛀 =

[
0 −Ω

Ω 0

]
, u =

[
u1

u2

]
, v =

[
v1

v2

]
.

The periodic displacement must be equal on any two boundary points related by periodicity. This implies that:

v(x1 + 𝜉1, x2 + 𝜉2) = v(x1, x2), (7)

where 𝜉1 and 𝜉2 correspond to the components of the periodicity patch 𝝃. The relative displacement can be obtained from

Equation (6):

u(x1 + 𝜉1, x2 + 𝜉2) − u(x1, x2) =

[
D11𝜉1 + D12𝜉2 − Ω𝜉2

D12𝜉1 + D22𝜉2 + Ω𝜉1

]
. (8)

According to Figure 1, the periodicity patch can be expressed as

𝝃 = hb

[
rb 𝜌rb

0 1

][
m1

m2

]
, ∀(m1,m2) ∈ Z

2. (9)

For the four vertices of the cell the position vectors, A1 being arbitrary chosen as reference, are given by:

xA =

[
x
A1
1

x
A1
2

][
1 1 1 1

]
+ 𝝃A = hb

[
0 rb (1 + 𝜌)rb 𝜌rb

0 0 1 1

]
, (10)

where

𝝃A = hb

[
rb 𝜌rb

0 1

][
0 1 1 0

0 0 1 1

]
. (11)

To suppress the two global translations, reference point A1 has been arbitrarily chosen not to displace. The displacement

field is given by:

u(xA1 , x
A
2 ) = hb

[
0 rbD11 rb(1 + 𝜌)D11 + D12 − Ω rb𝜌D11 + D12 − Ω

0 rbD12 + rbΩ D22 + rb(1 + 𝜌)D12 + rb(1 + 𝜌)Ω D22 + rb𝜌D12 + rb𝜌Ω

]
. (12)

The failure mechanisms for unit values of strains D and rigid rotation Ω are shown in Figure 2.
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VALENTINO et al. 5

F IGURE 2 Unit cell: Potential translational failure mechanisms and rigid rotation (in this case considering masonry with a low

coefficient of friction and associated joint dilatancy)

TABLE 1 Details of the expressions involved in the estimate of the macroscopic strength criterion

Discontinuity

line

Vector

n

Expression

of un

Expression

of ut

Length of

the line

Parameters

involved

1 e2 hb (D22 + rb𝜌D12 + rb𝜌Ω) hb (rb𝜌D11 + D12 − Ω) wb(1 − 𝜌)∕2 ch, 𝜇h

2 e2 hb (D22 − rb(1 − 𝜌)D12 − rb(1 − 𝜌)Ω) hb (−rb(1 − 𝜌)D11 + D12 − Ω) wb𝜌 ch, 𝜇h

3 e2 hb (D22 + rb𝜌D12 + rb𝜌Ω) hb (rb𝜌D11 + D12 − Ω) wb(1 − 𝜌)∕2 ch, 𝜇h

4 e1 hb (rbD11) hb (rD12 + rbΩ) hb∕2 cv, 𝜇v

5 e1 hb (rbD11) hb (rD12 + rbΩ) hb∕2 cv, 𝜇v

2.3 Upper bound estimate of macroscopic strength

The macroscopic strength criterion depends on the normal n and tangential t components of the displacement jump at

each joint, j. The following notation is introduced for the displacement jump vectorU:

U = Un n + Ut t. (13)

Within the unit cell one can identify five different joints between the blocks, with zero strain rate within each block as

shown in Figure 1B with zero strain rate within each block (d = 0). According to Equation (4), the maximum resisting

work ⟨𝜋⟩ is defined by:

⟨𝜋⟩ = 1

wbhb

5∑
j=1

∫
lj

0

𝜋j(U,n) dl, (14)

where lj is the length of the joint. Adopting the Mohr–Coulomb failure criterion (or, strictly speaking, simply the

“Coulomb failure criterion,” given the presence of a joint of fixed orientation), the failure criterion for each joint was

defined by Suquet32 by the support function 𝜋(U,n)

𝜋j(U,n) =

⎧
⎪⎨⎪⎩

Un
cj

tan𝜙j
, if Un ≥ tan𝜙j|Ut|,

+∞, otherwise,
(15)

where (cj, 𝜙j) are the Mohr–Coulomb strength parameters of joint j. Different material characteristics for horizontal and

vertical joints are denoted by suffixes h and v, respectively, such that the cohesion is, respectively, ch and cv and friction

𝜇h = tan𝜙h and 𝜇v = tan𝜙v.

Table 1 provides details of the expressions involved in the calculation of the support function𝜋(U,n) and the kinematic

admissibility from Equation (12).

The maximum resisting work equation (14) evaluates to:

⟨𝜋⟩ = cv
𝜇v
D11 +

ch
𝜇h
D22 (16)
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6 VALENTINO et al.

(A) (B)

F IGURE 3 Yield surfaces in the space ofmacroscopic stress states: (A) Case A, comprising four planes; (B) Case B, comprising six planes

obtained by summation using Equation (15) with the values of un, l and parameters in Table 1. Using the expressions in

Equation (15), it can be shown that the upper bound of the macroscopic strength criterion is defined by:

⟨𝜋⟩ =

⎧
⎪⎪⎨⎪⎪⎩

cv
𝜇v
D11 +

ch
𝜇h
D22, if

⎧⎪⎨⎪⎩

D11 ≥ 𝜇v|D12 + Ω|,
D22 + rb𝜌D12 + rb𝜌Ω ≥ 𝜇h|rb𝜌D11 + D12 − Ω|,
D22 − rb(1 − 𝜌)D12 − rb(1 − 𝜌)Ω ≥ 𝜇h| − rb(1 − 𝜌)D11 + D12 − Ω|,

+∞, otherwise.

(17)

2.4 Homogenized yield surfaces for masonry walls

The homogenized yield surfaces for masonry walls, taking into account interlock ratio and block aspect ratio, can be

derived from Equation (17). The homogenized masonry yield surfaces for 𝜌 = 0.7 are shown in Figure 3, where Case A

is applicable for values rb >
𝜇h

1 − 𝜌
∀𝜌 > 0.5, rb >

𝜇h

𝜌
∀𝜌 ≤ 0.5 and Case B for values rb <

𝜇h

1 − 𝜌
∀𝜌 > 0.5, rb <

𝜇h

𝜌
∀𝜌 ≤ 0.5.

The equations of the four planes defining Case A and six planes defining Case B are derived in Appendix A (see Equations

(A10)–(A13) and (A10), (A14)–(A17), respectively).

3 KINEMATIC APPROACH OF HOMOGENIZED MASONRY STRUCTURES
USING DLO

3.1 Equivalent homogenized strains in DLO

The stages in the DLO procedure are outlined diagrammatically in Figure 4. With DLO a solid body is discretized using

nodes interconnected via potential discontinuities, with compatibility at nodes enforced explicitly in the kinematic formu-

lation. Although many discontinuities will cross over one another, it can be shown that compatibility at crossover points

is enforced implicitly.12 Also, an adaptive solution procedure can potentially be used to reduce the number of potential

discontinuities that need to be represented in the problem constraint matrix at any given time,12 though this was not

employed in the present study.
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VALENTINO et al. 7

(A) (B) (C)

F IGURE 4 Steps in the DLO analysis of a body subjected to a horizontal (seismic) load: (A) Body discretized with nodes; (B) potential

discontinuities interconnecting the nodes; (C) discontinuities identified at failure when using the proposed homogenized failure model

F IGURE 5 Displacement jump and rotation at a discontinuity

Generally in DLO the discontinuities may be straight lines or more complex shaped lines. With reference to Figure 5,

the angle between the discontinuity line and e1 is then denoted by 𝜃, where 𝛼 and 𝛽 are the x- and y-axis direction

cosines, respectively, for the discontinuity line. The components of the tangent and the normal to the discontinuity line

are expressed as:

n = 𝛽e1 + 𝛼e2,

t = 𝛼e1 − 𝛽e2. (18)

The displacement discontinuity may also be expressed in terms of the components along the discontinuity line, denoted

byUt, and the normal to the discontinuity line denoted byUn, such that:

U12 =

[
U1

U2

]
=

[
𝛼 𝛽

−𝛽 𝛼

]
U. (19)

The flow rule must be respected at the two extremal points of each discontinuity line. Hence at one extremal point

Ut = s andUn = −n + 𝜔l∕2, and at the other extremal pointUt = s andUn = −n − 𝜔l∕2, where s is the tangential relative

strain, n is the normal relative strain and 𝜔 is the angular rotation of the discontinuity. These terms are collected in the

relative displacement matrix d where n is positive for compressive normal strains. These can be expressed as

U∓l∕2 =

⎡⎢⎢⎣
1 0 0

0 −1 ±
l

2

⎤⎥⎥⎦
d, where d =

⎡
⎢⎢⎢⎣

s

n

𝜔

⎤
⎥⎥⎥⎦
. (20)
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8 VALENTINO et al.

The equivalent strain rate tensor D along a discontinuity line may be expressed as in Hassen et al.:35

D =

⎡
⎢⎢⎢⎢⎣

𝛽 0

0 𝛼

𝛼

2

𝛽

2

⎤
⎥⎥⎥⎥⎦
U12, D =

⎡⎢⎢⎢⎣

D11

D22

D12

⎤⎥⎥⎥⎦
. (21)

Thus the relationships between the components of D and the components of d depend on the orientation of the

discontinuity 𝜃. The relationship at the two extreme points may be written as:

D∓l∕2 = C∓l∕2d. (22)

From Equations (19)–(21), we can derive the transformation matrix C:

C∓l∕2 =

⎡⎢⎢⎢⎢⎣

𝛽 0

0 𝛼

𝛼

2

𝛽

2

⎤⎥⎥⎥⎥⎦

[
𝛼 𝛽

−𝛽 𝛼

]⎡⎢⎢⎣
1 0 0

0 −1 ±
l

2

⎤⎥⎥⎦
. (23)

Hence,

C∓l∕2 =

⎡⎢⎢⎢⎢⎢⎣

𝛼𝛽 −𝛽2 ±
le𝛽2

2

−𝛼𝛽 −𝛼2 ±
le𝛼2

2
𝛼2 − 𝛽2

2
−𝛽𝛼 ±

le𝛼𝛽

2

⎤⎥⎥⎥⎥⎥⎦

. (24)

3.2 Optimization problem incorporating macroscopic strength criterion

A range of strength criteria can be handled usingDLO; for example, see Smith andGilbert12 for details of how the standard

Mohr–Coulomb criterion can be implemented for simple plane plasticity problems. However, for the in-plane masonry

problems of interest here, from the macroscopic strength criterion (17) each inequality may be rewritten in terms of six

extra positive parameters, or “plastic multipliers”, at each end of the discontinuity:

∀p1, p2, p3, p4, p5, p6 ≥ 0,

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D11 = 𝜇v(D12 + Ω) + p1,

D11 = −𝜇v(D12 + Ω) + p2,

D22 + rb𝜌D12 + rb𝜌Ω = 𝜇h(rb𝜌D11 + D12 − Ω) + p3,

D22 + rb𝜌D12 + rb𝜌Ω = −𝜇h(rb𝜌D11 + D12 − Ω) + p4,

D22 − rb(1 − 𝜌)D12 − rb(1 − 𝜌)Ω = 𝜇h(−rb(1 − 𝜌)D11 + D12 − Ω) + p5,

D22 − rb(1 − 𝜌)D12 − rb(1 − 𝜌)Ω = −𝜇h(−rb(1 − 𝜌)D11 + D12 − Ω) + p6.

(25)

These equations can be combined to eliminate Ω. The components of macroscopic strain rate D are then expressed as

functions of six plastic multipliers, related by two extra equations:

⟨𝜋⟩ = cv
𝜇v
D11 +

ch
𝜇h
D22 if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

D11 = 𝜇v(p1 + p2),

D22 = rb𝜌(p1 − p2) + 𝜇h(p3 + p4),

2D12 = −(1 + rb𝜌𝜇v)p1 + (1 − rb𝜌𝜇v)p2 + p3 − p4,

0 = rb(𝜇h𝜇v + 1)p1 + rb(𝜇h𝜇v − 1)p2 + 2𝜇h(p3 − p5),

0 = −rb(𝜇h𝜇v − 1)p1 − rb(𝜇h𝜇v − 1)p2 + 2𝜇h(p4 − p6),

pi ≥ 0, ∀i = 1, … , 6.

(26)
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VALENTINO et al. 9

A combination of the plastic multipliers is used to express D11 and D22 such that the friction coefficients 𝜇h and 𝜇v dis-

appear in the formulation of the support function. The upper bound of the macroscopic support function may then be

rewritten in terms of six plastic multipliers:

⟨𝜋⟩ = cv(p1 + p2) +
chrb𝜌

𝜇h
(p1 − p2) + ch(p3 + p4). (27)

Since the flow rule must be respected at the two extremal points of each discontinuity line, six plastic multipliers are

introduced at each end, denoted byp1 andp2. Combining Equation (22) and the three first conditions of Equation (26), the

kinematic form of the in-plane problemmay be expressed such that the unknowns d are related to the plastic multipliers

via the following expression:

Mp − Cd =

[
M1 0

0 M1

][
p1

p2

]
−

[
C−l∕2

Cl∕2

]
d = 0, (28)

where

M1 =

⎡⎢⎢⎢⎢⎣

𝜇v 𝜇v 0 0 0 0

rb𝜌 −rb𝜌 𝜇h 𝜇h 0 0

−
(1 + rb𝜌𝜇v)

2

1 − rb𝜌𝜇v
2

−
1

2

1

2
0 0

⎤⎥⎥⎥⎥⎦
. (29)

The homogenized masonry flow rule in Equation (26) also involves a relationship between the plastic multipliers. This is

taken into account by the following expression:

Qp =

[
Q1 0

0 Q1

][
p1

p2

]
= 0 with Q1 =

[
rb(𝜇h𝜇v + 1) rb(𝜇h𝜇v − 1) 2𝜇h 0 −2𝜇h 0

−rb(𝜇h𝜇v − 1) −rb(𝜇h𝜇v + 1) 0 2𝜇h 0 −2𝜇h

]
, (30)

together with the gmatrix of work coefficients from Equation (27):

gT =
[
gT1 gT1

]
, gT1 =

l

2

[
cv +

chrb𝜌

𝜇h
cv −

chrb𝜌

𝜇h
ch ch 0 0

]
. (31)

The optimization problem can then be expressed as follows:

min 𝜆fTLd = −fTDd + gTp subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

fTLd = 1,

Bd = 0,

Mp − Cd = 0,

Qp = 0,

p ≥ 0,

(32)

where fTL are the live loads, f
T
D are the dead loads, p is a plastic multiplier matrix, B is a compatibility matrix, and 𝜆 is

a load or “adequacy” factor. Finally, p and g are vectors of plastic multipliers and their corresponding work equation

coefficients, Q andM are matrices of plastic multiplier terms and C is a suitable transformation matrix.

Alternatively the optimization problem can be posed in the form of the original DLO formulation12,13,15 (see Appendix

B for details):

min 𝜆fTLd = −fTDd + gTp subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

fTLd = 1,

Bd = 0,

Np − d = 0,

Qp = 0,

p ≥ 0,

(33)
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10 VALENTINO et al.

where N is a flow matrix. In this latter formulation it is more convenient to add other flow rules and potentially

to implement the adaptive solution process proposed by Gilbert et al..15 This formulation has therefore been

incorporated in a research version of the LimitState:GEO36 DLO analysis software, now widely used in indus-

try. This software has been used to obtain solutions to the numerical example problems described in the next

section.

4 NUMERICAL EXAMPLES

4.1 De Buhan and de Felice wall

The first example comprises a simple rectangular wall with aspect ratio rw, comprising blocks with two different aspect

ratios (rb = 2.286 and rb = 4.571). Adequacy factors 𝜆 have been computed using the proposed homogenized DLOmodel

and compared with both experimental results and with analytical solutions based on a mechanism involving a fracture

line radiating at an angle 𝜃 from the toe of wall. The first analytical model considered employs the homogenization theory

proposed by de Buhan and de Felice,1 giving a solution of:

𝜆anal. = min(𝜆sliding, 𝜆rocking) with

⎡
⎢⎢⎢⎢⎢⎣

𝜆sliding = 𝜇h

𝜆rocking =

⎧⎪⎨⎪⎩

1

2t
, if

1

rw
≤ t,

rw(3 − 2rwt)

3 − r2wt2
, otherwise

(34)

and where:

t =

√
2

rb𝜇
. (35)

The second analytical model considered is one proposed by Heyman,37 giving the solution of:

𝜆anal. = min(𝜆sliding, 𝜆rocking) with

[
𝜆sliding = 𝜇,

𝜆rocking = 0.7282rw.
(36)

Heyman’s solutions are based on zero tensile strength elastic theory, with the block aspect ratio rb and material prop-

erties c and 𝜇 not considered explicitly. Instead only the wall aspect ratio rw is considered, with the assumption being that

not all the mass of the wall will be mobilized in sections of the wall that go into tension, thereby reducing the restoring

moment.

Thus analytical, DLO and experimental results are presented in Figure 6, taking the coefficient of friction 𝜇 = 0.6

and with the adequacy factor 𝜆 plotted against the reciprocal of wall aspect ratio (1∕rw) for the two block aspect ratios

considered, that is, rb = 2.286 and rb = 4.571, using a nodal resolution comprising approx. 1000 nodes. These plots are

similar in form to those presented by de Buhan and de Felice,1 with the experimental results again obtained from tests

carried out at the Ingegneria Strutturale e Geotecnica Department of the University of Rome on model walls tested to

failure by tilting the supporting plane of the structure.1 To obtain the homogenized DLO results the reported material

properties were used, with the joint cohesion c = 0. Figure 7 shows a sample homogenized DLO failure mechanism,

together with analytical and rigid block (associative friction) failure mechanisms for comparison (wall aspect ratio rw =

1.0 and block aspect ratio rb = 2.286).

It is evident from Figure 6 that the analytical adequacy factors are higher than those obtained using the DLO homog-

enization model. This is partly because the analytical equations derived by Heyman,37 and from homogenization theory

of de Buhan and de Felice,1 assume only a single discontinuity line, whereas the proposed DLO homogenization model

allows a number of discontinuity lines to be involved in the failure mechanism. This leads to lower associated adequacy

factors 𝜆, due to a smaller mass of wall being mobilized to provide a restoring moment. Also, since Heyman’s analytical

equation does not take into account block aspect ratio, it provides poor predictions for the block aspect ratio rb = 2.286

case.
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VALENTINO et al. 11

(A) (B)

F IGURE 6 De Buhan and de Felice wall: Adequacy factors for different wall aspect ratios, taking (A) rb = 2.286, 𝜌 = 0.5;

(B) rb = 4.571, 𝜌 = 0.5

(A) (B) (C) (D)

F IGURE 7 De Buhan and de Felice wall (rw = 0.984, rb = 2.286 case): (A) Mechanism assumed in analytical equations (29) and (31),

giving solutions of 𝜆 = 0.4140 and 𝜆 = 0.600, respectively; (B) rigid block (associative friction) solution, taking 𝜇 = 0.6, c = 0, giving

𝜆 = 0.5768; (C) potential DLO discontinuities when using 25 nodes; (D) homogenized DLO solution, taking 𝜇 = 0.6, c = 0, rb = 2.286,

𝜌 = 0.5, giving 𝜆 = 0.4659 (25 nodes) and a more accurate solution of 𝜆 = 0.4002 (1000 nodes)

4.2 Orduna and Lourenco wall

In the second example, the rectangular wall originally studied by Orduña and Lourenço22 is considered, taking

joint cohesion c = 0 and coefficient of friction 𝜇 = 0.75. First, it is of interest to explore how the adequacy factor

𝜆 obtained using the homogenized DLO model is influenced by the number of nodes used to discretize the wall;

Figure 8 shows the convergence characteristics for a wall of aspect ratio rw = 1, containing blocks of aspect ratio

rb = 3.0 and with an interlock ratio 𝜌 = 0.5. Sample DLO failure mechanisms are shown in Figure 9, together with dis-

cretized block representations of the DLO solutions. The images shown in Figure 9D–F were generated by mapping

the centroid of the blocks to the DLO rigid block regions and applying the DLO rigid block rotation and transla-

tion to the mapped blocks; interpenetrations between blocks may occur when the blocks lie close to adjacent DLO

rigid blocks.

It is also of interest to compare results obtained from the proposed homogenized DLO model with results obtained

from associative and non-associative friction rigid block models; results obtained using the methods described by
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12 VALENTINO et al.

F IGURE 8 Orduna and Lourenco wall: Variation of adequacy factor with number of nodes (with rb = 3.0, 𝜌 = 0.5, rw = 1). Computed

converged solution (𝜆∞ = 0.4869) obtained from the best-fit relation indicated

(A) (B) (C)

(D) (E) (F)

F IGURE 9 Orduna and Lourenco wall: Influence of number of nodes on homogenized DLO solution, (A) 6 × 6 nodal divisions, giving

𝜆 = 0.5273; (B) 12 × 12 nodal divisions, giving 𝜆 = 0.5060; (C) 18 × 18 nodal divisions, giving 𝜆 = 0.4994; (D–F) discretized graphical

interpretations of homogenized models (A–C), respectively. Properties: rb = 3.0, 𝜌 = 0.5, rw = 1. In the DLO solution, the nodes are

distributed along a regular orthogonal grid.
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VALENTINO et al. 13

TABLE 2 Orduna and Lourenco wall: Adequacy factor versus number of blocks in wall model (with rb = 3.0, 𝜌 = 0.5, rw = 1)

Adequacy factor 𝝀

Rigid blocka

Ex. no. Size No. of blocks No. of courses Associative Non-associative Homogenized DLO Diffb

1 12 × 4 48 12 0.6996 0.6769 0.4869 −26.9%

2 18 × 6 108 18 0.6469 0.6242 0.4869 −20.8%

3 24 × 8 192 24 0.6100 0.5894 0.4869 −16.1%

4 36 × 12 432 36 0.5664 0.5546 0.4869 −10.8%

5 48 × 16 768 48 0.5450 0.5389 0.4869 −8.2%

6 72 × 24 1728 72 0.5255 0.5206 0.4869 −5.0%

7 96 × 32 3072 96 0.5165 0.5105 0.4869 −3.1%

aObtained using the methods described in Reference 20.
bDifference between homogenized DLO solution and non-associative friction rigid block solution.

F IGURE 10 Orduna and Lourenco wall: Adequacy factor versus number of blocks in wall model (with rb = 3.0, 𝜌 = 0.5, rw = 1)

Gilbert et al.20 are presented in Table 2 and in Figure 10. Note that Orduña and Lourenço22 presented in their

paper a failure mechanism for a problem comprising 48 courses, with the corresponding non-associative load fac-

tor being 0.53920 (corresponding non-associative and associative load factors of 0.53886 and 0.545034, respectively,

were reported by Gilbert et al.20). The results show that the homogenized DLO model produces the lowest adequacy

factors while the associative friction rigid block model produces the highest adequacy factors. However, as the num-

ber of blocks in the wall is increased, differences in the computed adequacy factors diminish, with the rigid block

solutions tending toward the computed converged homogenized DLO model solution (𝜆∞ = 0.4869). This is to be

expected, as the homogenized model is effectively modeling the scenario where the wall includes an infinite number

of blocks.

Next, as considered by Orduña and Lourenço,22 the influence of various problem input parameters on the computed

adequacy factors is considered. Thus block aspect ratio rb, interlock ratio 𝜌, and wall aspect ratio rw were varied; see

Figure 11, which for comparative purposes also includes analytical homogenized and rigid block (associative friction)

solutions,with approx. 800 rigid blocks used in the latter case. As expected, the adequacy factor𝜆 increaseswith increasing

wall aspect ratio rw, and also increasing block aspect ratio rb. The highest valid adequacy factors are obtained when the
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14 VALENTINO et al.

(A) (B)

F IGURE 11 Orduna and Lourenco wall: (A) Adequacy factor versus block aspect ratio, taking interlock ratio 𝜌 = 0.5; (B) adequacy

factor versus interlock ratio, taking block aspect ratio rb = 3. Wall aspect ratios rw as indicated. anal., analytical homogenized solution; block,

rigid block solution; DLO, homogenized DLO solution, Equation (29)

interlock ratio 𝜌 = 0.5, since for interlock ratios 𝜌 < 0.5 a reversal in the loading directionwould lead to reduced adequacy

factors (e.g., for an interlock ratio 𝜌 = 0.3, when the load is reversed the solution will correspond to the 𝜌 = 1 − 0.3 = 0.7

value provided).

4.3 Ferris and Tin-Loi walls

Next, the simple rigid block walls previously studied by Ferris and Tin-Loi21 are considered. Unlike the previous exam-

ples considered, some of these walls include openings and were variously modeled on the assumption of associative and

non-associative joints in the original study;21 the walls were later reanalyzed using various discrete analysis models by

Gilbert et al.13,20 Here the wall geometries provided in Gilbert et al.20 were used, taking the block aspect ratio rb = 3, inter-

lock ratio 𝜌 = 0.5, cohesion c = 0 and coefficient of friction 𝜇 = 0.75 in the present homogenized DLO model. Note that

areas immediately above openings needed to be modeled explicitly using rigid blocks in the homogenized DLOmodel in

order to avoid localized failure of the masonry. Note that a rigid block can readily be modeled in DLO by including in the

formulation potential discontinuities lying on the perimeter of the block, but no potential discontinuities that cross the

region occupied by the block.

Previously obtained results are compared to homogenized DLO results in Table 3. For wall problems comprising a

small number of blocks and contacts it is evident that the computed homogenized DLO solutions are quite conservative

(with the adequacy factor being up to 32.5% lower than the corresponding rigid block (non-associative) adequacy factor);

however, the degree of conservatism can be observed to diminish for walls containing a higher number of blocks and

contacts (disparity down to 12.2% in the case of the largest problem). A sample solution is presented in Figure 12.

4.4 Masonry buttress wall

The stability of an old masonry buttress wall under earthquake loading is now considered, with results from rigid block

and homogenized DLOmodels again compared. The wall comprises masonry arches atop buttresses, loosely based on the

facade of the Odeon of Herodes Atticus in Athens, Greece,38 as shown in Figure 13. As in the previous example, in the

homogenized DLO model the masonry, in this case arches, immediately above the openings were modeled using rigid

blocks. Dry mortar with a cohesion c = 0 and a coefficient of friction 𝜇 = 0.6 was assumed in the analyses.
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VALENTINO et al. 15

TABLE 3 Ferris and Tin-Loi walls: Computed adequacy factors using rigid block and homogenized DLO analyses

Adequacy factor 𝝀

Rigid block20

Example Sizea Associative Non-associative Homogenized DLO Diffb

1 33 × 83 0.64285 0.63982 0.43175 −32.5%

2 55 × 141 0.56368 0.56262 0.42916 −23.7%

3 46 × 102 0.40369 0.35582 0.28084 −21.1%

4 55 × 116 0.33195 0.26374 0.22469 −14.8%

5 61 × 120 0.23964 0.21455 0.17488 −18.5%

6 146 × 345 0.34782 0.29649 0.26029 −12.2%

aExpressed in terms of the number of blocks × the number of contacts.
b% difference between homogenized DLO solution and non-associative friction rigid block solution.

(A) (B) (C)

F IGURE 12 Ferris and Tin-Loi wall (Example 3): (A) Rigid block (associative friction) solution, 𝜆 = 0.4037; (B) homogenized DLO

solution, 𝜆 = 0.2808 (509 nodes evenly distributed within and along boundaries); (C) discretized graphical interpretation of homogenized

solution (B)

In the rigid block (associative friction) model the computed adequacy factor 𝜆 = 0.2449 whereas in the homogenized

DLO model the adequacy factor 𝜆 = 0.2321, a difference of less than 6 percent. It is also evident from Figure 13 that the

failure mechanisms are similar.

4.5 Building facade subject to support movement

Thenext example involves a three-storeywall forming the facade of amodel-scale buildingwith six openings, as previously

studied by Pepe et al.30 andTiberti et al..31 The facade is 1.5mwide and 1.8mhigh, and contains 0.2mwide and 0.3mhigh

openings. The rightmost section of the wall is subject to a vertical foundation settlement, analyzed via both rigid block

and homogenizedDLOmodels, as shown in Figure 14. Thematerial properties were as employed by Tiberti et al.,31 except

that for sake of simplicity the blocks were here assumed to be non-tensile resistant and infinitely resistant in compression

(in Tiberti et al.31 the masonry was assumed to have a small cohesive and tensile strength of 0.01 MPa and a compressive

strength of fc = 90 MPa; considering the small scale of the wall considered in comparison to the crushing strength, the

latter can be expected to have a negligible influence on the solutions obtained). Also, for the homogenized DLO models

large blocks representing lintels were positioned above openings, as indicated in Figure 14, to avoid localized failure, with

the interface between these and the surrounding masonry modeled with a Mohr–Coulomb material with cohesion c = 0

and coefficient of friction 𝜇 = 0.4; these properties were also assumed for all interfaces between units in the surrounding

masonry. All wall elements were assumed to have a unit weight of 12kN/m3. The runs were carried out using a specially
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16 VALENTINO et al.

(A) (B)

F IGURE 13 Masonry buttress wall: (A) Rigid block (associative friction) solution, 𝜆 = 0.2449; (B) homogenized DLO solution,

𝜆 = 0.2217 (discretized using 344 nodes)

(A) (B) (C)

F IGURE 14 Building facade subject to support movement: (A) Rigid block model (large blocks), 𝜆 = 0.5918; (B) rigid block model

(small blocks), 𝜆 = 0.5174; (C) homogenized DLO model (1000 nodes), 𝜆 = 0.5167

modified version of the LimitState:GEO36 software using a Windows PC equipped with 8 Gb RAM and an Intel® Core™

i7-3610QM CPU (released in 2012), running at 2.30 GHz.

Two rigid block models were developed, one with “large” blocks (0.1 m long × 0.05 m high × 0.05 m thick) and

another with “small” blocks (0.05 m long × 0.025 m high × 0.05 m thick). Thus for the corresponding homogenized

DLO model a block aspect ratio rb = 2 and interlock ratio 𝜌 = 0.5 were used to represent the main masonry elements.

The support settlement was imposed by replacing the rightmost fixed support with a weightless rigid block constrained

to translate vertically and subjected to an upward vertical dead load force of fDs = 20 kN/m2, and a downward vari-

able load 𝜆fLs, where fLs = −fDs. The resulting foundation reaction force was then calculated from fs = (1 − 𝜆)fDs, as

outlined in Portioli and Cascini.39 Computed foundation reaction forces and identified crack patterns are presented in

Figure 14 and in Table 4 for the three models. Results obtained using various numbers of DLO nodes are also included in

the table.

As expected, as the size of the constituent blocks is reduced, initially via the rigid block models, and then via the

homogenized DLO model, which at the limit can be considered to represent an assemblage of infinitely small blocks, a
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VALENTINO et al. 17

TABLE 4 Building facade subject to support movement: Computed adequacy factors and limiting foundation reactions

No. rigid blocks

(blocks × contacts) No. nodes

Adequacy

factor 𝝀

Foundation

reaction (kN/m)

Rigid block Large blocks 480 × 1292 – 0.5918 2.4492

Small blocks 1842 × 5222 – 0.5174 2.8956

Homogenized DLO – 2000 0.5127 2.9238

– 1000 0.5167 2.8998

– 500 0.5494 2.7036

– 250 0.5875 2.4750

TABLE 5 Building facade subject to support movement: Comparison of computed objective function (OF) and total computational

time values with those presented by Tiberti et al.31

Present results Tiberti et al.31 results

No. rigid blocks

(blocks × contacts) No. nodes ×

Objective

factor (OF)

Time

(s) Model

Objective

factor (OF)

Time

(s)

Rigid block Large 480× 1292 – 0.00245 0.3 Coarse 0.00270 340

Small 1842× 5222 – 0.00290 1.5 Fine 0.00274 65,900

Homogenized

DLO

– 2000 0.00292 316 Homogeneous

(1098 elems)

0.00265 758

– 1000 0.00290 44.1 GA 200a 0.00267 4736

– 500 0.00270 6.6 GA 100a 0.00240 1705

– 250 0.00248 1.1 GA 50a 0.00200 678

aGA population size.

progressively larger support reaction force was found to be required to support the rightmost section of the wall. (In this

case, the 1000 node and 250 node DLO solutions approximately correspond to the small and large unit rigid block model

solutions, respectively, with by inference the 2000 node DLO solution corresponding to a rigid block model comprising

very small units.)

In Table 5, rigid block and homogenized DLO solutions are compared with solutions presented by Tiberti et al.31 The

objective function (OF) defined in Tiberti et al.31 is the work done by the limiting foundation reaction force for a unit

wall width, assuming a vertical displacement of 1 mm. In the case of the homogeneous genetic algorithm (GA) models

described by Tiberti et al.,31 the OF value increases as the GA population size is increased. In the case of these models

the identified failure mechanisms necessarily comprise only a small number of large rigid blocks, a function of the initial

coarse triangulated mesh used as a starting point in the proposed adaptive GA-based solution strategy; this is required

to keep computational costs manageable. In comparison, the failure mechanisms obtained from the homogenized DLO

models include regions of closely spaced fracture lines, which can be identified due to the far wider search space available.

This also means that larger OF values are obtained using DLO, at much lower computational cost than when using the

GA-based scheme (e.g., using 500 DLO nodes an OF value of 0.0270 was obtained in 6.6 s; a similar OF value, of 0.0267,

obtained using a GA population of 200, required 4736 s to solve, i.e., >700 times longer, with differences in the CPUs

used [Intel i7-3635QM here vs Intel i7-5500U in the previous study] likely accounting for only a very small part of this

difference). In future there is also scope to use the adaptive solution procedure employed by Smith and Gilbert12 to obtain

DLO solutions significantly more quickly.

4.6 Building facade subject to soil induced settlement

In the final example a soil structure interaction example is considered. The building facade considered in the previous

section is nowmodeled with more realistic dimensions, by scaling up the building dimensions by a factor of six, and also

selectingmore realisticmaterial properties. A spread foundation is also introduced, composed of the same type ofmasonry
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18 VALENTINO et al.

(A) (B) (C)

F IGURE 15 Building facade subject to soil induced settlement: (A) Rigid block model (large blocks), 𝜆 = 0.2257 (1290 nodes); (B) rigid

block model (small blocks), 𝜆 = 0.2218 (4004 nodes); (C) homogenized DLO model, 𝜆 = 0.2207 (960 nodes). The soil is modeled using

approx. 200 DLO nodes in each case.

as the main wall. To induce movement an open trench 1.2 m wide and 2.4 m deep is located 0.5 m from the building, as

shown in Figure 15. In this case, the adequacy factor was applied to the masonry self weight in order to trigger failure.

The supporting soil was modeled as a Mohr–Coulomb material with undrained cohesion c = 20 kPa, angle of friction

𝜙 = 0◦ and unit weight of 22 kN/m3. For the masonry, the blocks were assumed to have a unit weight of 20 kN/m3, with

the coefficient of friction maintained as 𝜇 = 0.4. In the homogenized DLO model an aspect ratio rb = 2 and an interlock

ratio of 𝜌 = 0.5 were used.

From Figure 15, it is evident that the predicted overall modes of response of the three building facades are similar,

though somewhat different to those shown in Figure 14, where only vertical movement of one part of the support was

allowed. The example clearly demonstrates the capability of the homogenized DLOmodel developed herein to be applied

to more complex scenarios, in this case involving soil-structure interaction.

4.7 Commentary

In many of the examples, it has been demonstrated that, as the number of blocks in a wall increases, results tend toward

those obtainable from the proposed homogenized DLOmodel. This was found to be the case even when a non-associative

friction model was employed in the comparative rigid block models—notwithstanding that all the homogenized DLO

models considered herein employed an associative friction model. Thus the use of homogenization theory in conjunc-

tion with the kinematic limit analysis approach described permits engineers to rapidly analyze in-plane masonry wall

problems without need to discretize the wall into a finite number of blocks and mortar joints. As expected, the adequacy

factor 𝜆 was found to decrease with increasing wall aspect ratio rw and decreasing block aspect ratio rb. Also, the highest

adequacy factors 𝜆 were obtained with an interlock ratio 𝜌 = 0.5 (i.e., regular running bond).

Although for sake of simplicity in the present study, constituent blocks have been assumed to be infinitely resis-

tant, a finite masonry strength criterion can potentially be added to the proposed homogenized DLO model, permitting

a more diverse range of failure mechanisms to be identified, including, for example, shear cracking in blocks.40 The

approach can potentially be further extended to accommodate material crushing and torsion interaction22,41-43 and to

model out-of-plane problems such as those considered in the context of homogenization by various workers.44-49

5 CONCLUSIONS

Anewnumerical limit analysismodel suitable formodelingmasonrywalls subject to in-plane loading has been presented.

This uses DLO in conjunction with a homogenized yield surface to provide a smeared continuum (“macromodeling”)
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VALENTINO et al. 19

representation of the constituent masonry. The homogenized model presented takes account of the interlock ratio of the

masonry blocks with, for sake of simplicity, masonry joints reduced to interfaces and blocks assumed to be infinitely

resistant.

Since DLO is formulated entirely in terms of discontinuities it can produce accurate solutions for problems

involving singularities. However, unlike rigid block representations of masonry, it is not necessary to specify

the locations of potential failure surfaces in advance. Thus when DLO is used in conjunction with a homoge-

nized yield surface, the size of the constituent blocks effectively reduces to zero. Practically speaking, this obvi-

ates the need to include a large number of blocks in a numerical model in order to safely predict the response

a real-world wall. This has been demonstrated in the example problems considered in the present contribution,

which include walls with and without openings, subject to horizontal loadings and support settlements. This

was found to be the case even when a non-associative friction model was employed in comparative rigid block

models, notwithstanding that an associative friction model was used in the homogenized DLO model described

herein.
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APPENDIX A. HOMOGENIZED MASONRY YIELD SURFACES

The yield surfaces for masonry, taking into account interlock ratio and block aspect ratio, can be determined from

Equation (17). The homogenized masonry yield surfaces are shown in Figure 3 for 𝜌 = 0.7. The set of macroscopic

stress fields is a polyhedral cone and is formed by all the convex combinations of the normal to the strain planes. The

homogenized strain surfaces can be derived from the following inequalities:

D11 ≥ 𝜇v|D12 + Ω|,
D22 + rb𝜌D12 + rb𝜌Ω ≥ 𝜇h|rb𝜌D11 + D12 − Ω|,

D22 − rb(1 − 𝜌)D12 − rb(1 − 𝜌)Ω ≥ 𝜇h| − rb(1 − 𝜌)D11 + D12 − Ω|. (A1)

From:

D11 ≥ 𝜇v|D12 + Ω|,
−D11 − 𝜇vD12

𝜇v
≤ Ω, (A2)

D11 − 𝜇vD12

𝜇v
≥ Ω. (A3)

From:

D22 + rb𝜌D12 + rb𝜌Ω ≥ 𝜇h|rb𝜌D11 + D12 − Ω|,

D22 + rb𝜌D12 + rb𝜌Ω ≥ 𝜇h(rb𝜌D11 + D12 − Ω),

−D22 − (rb𝜌 − 𝜇h)D12 + 𝜇hrb𝜌D11

𝜇h + rb𝜌
≤ Ω, (A4)

D22 + rb𝜌D12 + rb𝜌Ω ≥ −𝜇h(rb𝜌D11 + D12 − Ω),

D22 + (rb𝜌 + 𝜇h)D12 + 𝜇hrb𝜌D11

𝜇h − rb𝜌
≥ Ω for 𝜇h − rb𝜌 > 0, (A5)

D22 + (rb𝜌 + 𝜇h)D12 + 𝜇hrb𝜌D11

𝜇h − rb𝜌
≤ Ω for 𝜇h − rb𝜌 < 0. (A6)

From:

D22 − rb(1 − 𝜌)D12 − rb(1 − 𝜌)Ω ≥ 𝜇h| − rb(1 − 𝜌)D11 + D12 − Ω|,

D22 − rb(1 − 𝜌)D12 − rb(1 − 𝜌)Ω ≥ 𝜇h(−rb(1 − 𝜌)D11 + D12 − Ω),

D22 − (rb(1 − 𝜌) + 𝜇h)D12 + rb(1 − 𝜌)𝜇hD11 ≥ Ω (rb(1 − 𝜌) − 𝜇h) ,

D22 − (rb(1 − 𝜌) + 𝜇h)D12 + rb(1 − 𝜌)𝜇hD11

rb(1 − 𝜌) − 𝜇h
≤ Ω for rb(1 − 𝜌) − 𝜇h < 0, (A7)

D22 − (rb(1 − 𝜌) + 𝜇h)D12 + rb(1 − 𝜌)𝜇hD11

rb(1 − 𝜌) − 𝜇h
≥ Ω for rb(1 − 𝜌) − 𝜇h > 0, (A8)
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D22 − rb(1 − 𝜌)D12 − rb(1 − 𝜌)Ω ≥ −𝜇h(−rb(1 − 𝜌)D11 + D12 − Ω),

D22 − (rb(1 − 𝜌) − 𝜇h)D12 − 𝜇hrb(1 − 𝜌)D11 ≥ (𝜇h + rb(1 − 𝜌)) Ω,

D22 − (rb(1 − 𝜌) − 𝜇h)D12 − 𝜇hrb(1 − 𝜌)D11

𝜇h + rb(1 − 𝜌)
≥ Ω. (A9)

The intersection between planes yields two different polyhedral surfaces having four or six planes depending on the values

of rb, 𝜇h, 𝜇v and 𝜌. The following two intersections vectors are the same for both planes.

Vector 1 is obtained from (A2) and (A3):

D11 − 𝜇vD12

𝜇v
≥ −D11 − 𝜇vD12

𝜇v,

−D11 ≤ 0. (A10)

Vector 2 is obtained from (A4) and (A9):

−D22 − (rb𝜌 + 𝜇h)D12 − 𝜇hrb𝜌D11

𝜇h + rb𝜌
≤ D22 − (rb(1 − 𝜌) − 𝜇h)D12 − 𝜇hrb(1 − 𝜌)D11

𝜇h + rb(1 − 𝜌)
,

D11rb𝜇h(2r𝜌(1 − 𝜌) + 𝜇h) + 2D12(1 − 2𝜌)rb𝜇h − D22(2𝜇h + rb) ≤ 0. (A11)

For the four plane yield surface we have the two additional equations as follows.

Vector 3 is obtained from (A4) and (A8) and for 𝜇h − rb(1 − 𝜌) < 0:

−D22 − (rb𝜌 − 𝜇h)D12 + 𝜇hrb𝜌D11

𝜇h + rb𝜌
≤ D22 − (rb(1 − 𝜌) + 𝜇h)D12 + rb(1 − 𝜌)𝜇hD11

rb(1 − 𝜌) − 𝜇h
,

−𝜇hD11 + 2D12 −
D22

𝜇h
≤ 0. (A12)

Vector 4 is obtained from (A6) and (A9) and for 𝜇h − rb𝜌 < 0:

D22 + (rb𝜌 + 𝜇h)D12 + 𝜇hrb𝜌D11

𝜇h − rb𝜌
≤ D22 − (rb(1 − 𝜌) − 𝜇h)D12 − 𝜇hrb(1 − 𝜌)D11

𝜇h + rb(1 − 𝜌)
,

−𝜇hD11 − 2D12 −
D22

𝜇h
≤ 0. (A13)

For the six plane yield surface, we have four additional equations as follows.

Vector 3 is obtained from (A7) and (A9) and for 𝜇h − rb(1 − 𝜌) > 0:

D22 − (rb(1 − 𝜌) + 𝜇h)D12 + rb(1 − 𝜌)𝜇hD11

rb(1 − 𝜌) − 𝜇h
≤ D22 − (rb(1 − 𝜌) − 𝜇h)D12 − 𝜇hrb(1 − 𝜌)D11

𝜇h + rb(1 − 𝜌)
,

−D22 + 2D12rb(1 − 𝜌) − r2
b
(1 − 𝜌)2D11 ≤ 0. (A14)

Vector 4 is obtained from (A4) and (A5) and for 𝜇h − rb𝜌 > 0 > 0:

D22 + (rb𝜌 − 𝜇h)D12 − 𝜇hrb𝜌D11

𝜇h + rb𝜌
≤ D22 + (rb𝜌 + 𝜇h)D12 + 𝜇hrb𝜌D11

𝜇h − rb𝜌
,

−D22 − (rb𝜌)2D11 − 2D12rb𝜌 ≤ 0 . (A15)

Vector 5 is obtained from (A3) and (A7) and for 𝜇h − rb(1 − 𝜌) > 0:
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D11 − 𝜇vD12

𝜇v
≥ D22 − (rb(1 − 𝜌) + 𝜇h)D12 + rb(1 − 𝜌)𝜇hD11

rb(1 − 𝜌) − 𝜇h
,

(
−
1

𝜇v
+
rb(1 − 𝜌)

𝜇v𝜇h
− rb(1 − 𝜌)

)
D11 − 2D12 −

D22

𝜇h
≤ 0. (A16)

Vector 6 is obtained from (A2) and (A5) and for 𝜇h − rb𝜌 > 0:

−D11 − 𝜇vD12

𝜇v
≤ D22 + (rb𝜌 + 𝜇h)D12 + 𝜇hrb𝜌D11

𝜇h + rb𝜌
,

(
−
1

𝜇v
+

rb𝜌

𝜇v𝜇h
− rb𝜌

)
D11 − 2D12 −

D22

𝜇h
≤ 0. (A17)

APPENDIX B. ALTERNATIVE DLO FORMULATION

In this alternative formulation equation (28) is reformulated to include a flow rule constraint in the form Np − d = 0.

Equation (30) includes additional conditions Q1 that are retained. By rearranging Equation (28) by interchanging row 3

with row6 the equations can bewritten in flow rule equation format by eithermatrix inversion or byGaussian elimination.

The equations in DLO format are written as:

min 𝜆fTLd = −fTDd + gTp subject to

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

fTLd = 1,

Bd = 0,

Np − d = 0,

Qp = 0,

p ≥ 0,

(B1)

where

gT =
l

2

[
cv cv (1 − 𝜌)ch (1 − 𝜌)ch 𝜌ch 𝜌ch cv cv (1 − 𝜌)ch (1 − 𝜌)ch 𝜌ch 𝜌ch

]
, (B2)

N =

⎡
⎢⎢⎢⎣

B1 B2 B3 B3 0 0

B4 B5 B6 B6 0 0

B7 B8 B9 B9 0 0

0 0 0 0 0 0

B10 B11 B14 −B14 0 0

B12 B13 B15 −B15 0 0

⎤
⎥⎥⎥⎦
, (B3)

Q =

[
Q0

Q1

]
, (B4)

Q0 =

⎡⎢⎢⎢⎣

−B1 −B2 −B3 −B3 0 0

−B16 −B17 −B18 −B19 0 0

B20 B21 B22 B23 0 0

B1 B2 B3 B3 0 0

B16 B17 B18 B19 0 0

B20 B21 B22 B23 0 0

⎤⎥⎥⎥⎦
, (B5)

Q1 =

⎡⎢⎢⎢⎢⎢⎣

rb −rb 𝜇h 𝜇h −𝜇h −𝜇h

rb𝜇v rb𝜇v −1 1 1 −1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

rb −rb 𝜇h 𝜇h −𝜇h −𝜇h

rb𝜇v rb𝜇v −1 1 1 −1

⎤⎥⎥⎥⎥⎥⎦

. (B6)

When 𝛼 = 0 or 𝛽 = 0 a division by zero would occur. Hence special solutions are required as follows.

For the case when 𝛼 = 0, Equation (28) is reformulated by performing one Gaussian elimination step:

N =

⎡⎢⎢⎢⎢⎣

A1 A2 1 −1 0 0
𝜇v

2

𝜇v

2
0 0 0 0

−
𝜇v

l
−
𝜇v

l
0 0 0 0

0 0 0 0 0 0
𝜇v

2

𝜇v

2
0 0 0 0

𝜇v

l

𝜇v

l
0 0 0 0

⎤⎥⎥⎥⎥⎦
, (B7)
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Q0 =

⎡
⎢⎢⎢⎣

rb𝜌 −rb𝜌 𝜇h 𝜇h 0 0

0 0 0 0 0 0

A1 A2 1 −1 0 0

0 0 0 0 0 0

0 0 𝜇h 𝜇h 0 0

−A1 −A2 −1 1 0 0

⎤
⎥⎥⎥⎦
. (B8)

For the case when 𝛽 = 0, Equation (28) is reformulated by performing one Gaussian elimination step:

N =

⎡⎢⎢⎢⎢⎣

−A1 −A2 −1 1 0 0
rb𝜌

2
−
rb𝜌

2

𝜇h

2

𝜇h

2
0 0

−
rb𝜌

l

rb𝜌

l
−
𝜇h

l
−
𝜇h

l
0 0

0 0 0 0 0 0
rb𝜌

2
−
rb𝜌

2

𝜇h

2

𝜇h

2
0 0

rb𝜌

l
−
rb𝜌

l

𝜇h

l
−
𝜇h

l
0 0

⎤⎥⎥⎥⎥⎦
, (B9)

Q0 =

⎡⎢⎢⎢⎣

𝜇h 𝜇h 0 0 0 0

0 0 0 0 0 0

A1 A2 1 −1 0 0

0 0 0 0 0 0

𝜇v 𝜇v 0 0 0 0

−A1 −A2 1 −1 0 0

⎤⎥⎥⎥⎦
, (B10)

where the components are:

A1 = −rb𝜌𝜇v − 1, A2 = −rb𝜌𝜇v + 1,

B1 =
−𝛼𝜇v

𝛽
+

𝛽rb𝜌

𝛼
, B2 =

−𝛼𝜇v

𝛽
−

𝛽rb𝜌

𝛼
, B3 =

𝛽𝜇h

𝛼
,

B4 =

(
1 −

1

4𝛽2

)
𝜇v +

(
1 −

1

4𝛼2

)
rb𝜌, B5 =

(
1 −

1

4𝛽2

)
𝜇v −

(
1 −

1

4𝛼2

)
rb𝜌,

B6 = −
(
1 −

1

4𝛼2

)
𝜇h, B7 =

−𝜇v

2𝛽2l
+

−rb𝜌

2𝛼2l
, B8 =

−𝜇v

2𝛽2l
+

rb𝜌

2𝛼2l
,

B9 =
−𝜇h

2𝛼2l
, B10 =

A1

4𝛼𝛽
, B11 = −

A2

4𝛼𝛽
,

B12 =
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, B13 = −
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, B14 =

1

4𝛼𝛽
,

B15 =
1

2𝛼𝛽l
, B16 = B4 − B10, B17 = B5 − B11,

B18 = B6 − B14, B19 = B6 + B14, B20 = −B7 − B12,

B21 = −B8 − B13, B22 = −B9 − B15, B23 = −B9 + B15.
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