
This is a repository copy of On the Design of Federated Learning in Latency and Energy
Constrained Computation Offloading Operations in Vehicular Edge Computing Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/201527/

Version: Accepted Version

Article:

Shinde, S. orcid.org/0000-0003-2716-6441, Bozorgchenani, A. orcid.org/0000-0003-1360-
6952, Tarchi, D. orcid.org/0000-0001-7338-1957 et al. (1 more author) (2022) On the
Design of Federated Learning in Latency and Energy Constrained Computation Offloading
Operations in Vehicular Edge Computing Systems. IEEE Transactions on Vehicular
Technology, 71 (2). pp. 2041-2057. ISSN 0018-9545

https://doi.org/10.1109/tvt.2021.3135332

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

On the Design of Federated Learning in Latency

and Energy Constrained Computation Offloading

Operations in Vehicular Edge Computing Systems
Swapnil Sadashiv Shinde, Student Member, IEEE, Arash Bozorgchenani, Member, IEEE,

Daniele Tarchi, Senior Member, IEEE, and Qiang Ni, Senior Member, IEEE

Abstract—With the advent of smart vehicles, several new
latency-critical and data-intensive applications are emerged in
Vehicular Networks (VNs). Computation offloading has emerged
as a viable option allowing to resort to the nearby edge servers
for remote processing within a requested service latency require-
ment. Despite several advantages, computation offloading over
resource-limited edge servers, together with vehicular mobility,
is still a challenging problem to be solved. In particular, in order
to avoid additional latency due to out-of-coverage operations,
Vehicular Users (VUs) mobility introduces a bound on the
amount of data to be offloaded towards nearby edge servers.
Therefore, several approaches have been used for finding the
correct amount of data to be offloaded. Among others, Federated
Learning (FL) has been highlighted as one of the most promising
solving techniques, given the data privacy concerns in VNs
and limited communication resources. However, FL consumes
resources during its operation and therefore incurs an additional
burden on resource-constrained VUs. In this work, we aim to
optimize the VN performance in terms of latency and energy
consumption by considering both the FL and the computation
offloading processes while selecting the proper number of FL
iterations to be implemented. To this end, we first propose
an FL-inspired distributed learning framework for computation
offloading in VNs, and then develop a constrained optimization
problem to jointly minimize the overall latency and the energy
consumed. An evolutionary Genetic Algorithm is proposed for
solving the problem in-hand and compared with some bench-
marks. The simulation results show the effectiveness of the
proposed approach in terms of latency and energy consumption.

Index Terms—Vehicular Edge Computing, Computation Of-
floading, Federated Learning, Latency, Energy consumption,
Genetic Algorithm

I. INTRODUCTION

MODERN cities are characterized by the presence of an

increased interest in mobility management for a higher

urban life sustainability. The ongoing COVID-19 pandemic

has increased the importance of a sustainable smart transport

infrastructure [1]. In this context, road users are becoming

smart, requiring a tighter interaction with the Internet and

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Swapnil Sadashiv Shinde and Daniele Tarchi are with Department of
Electrical, Electronic and Information Engineering “Guglielmo Marconi”,
University of Bologna, Italy, email:{swapnil.shinde2,daniele.tarchi}@unibo.it

Arash Bozorgchenani and Qiang Ni are with the School
of Computing and Communications, Lancaster University, UK,
email:{a.bozorgchenani,q.ni}@lancaster.ac.uk

among them in order to strengthen vehicular requirements [2].

This has introduced the possibility of implementing several

services and generated a large amount of data, hence requiring

the introduction of suitable computation and storage resources,

which vehicles are not capable of providing [3].

Due to a lack of available resources, Vehicular Users (VUs)

tend to offload computation tasks to the nearby edge and

cloud computing servers [4], [5]. Computation offloading

enables several data-intensive and latency-critical services and

applications with the potential of enhancing service quality

for consumers. Within this scenario, Cloud Computing has

been envisaged as one of the most important technologies for

assisting Vehicular Networks (VNs) by executing services at

remote cloud platforms. However, Cloud Computing results in

high response time, which is not acceptable in latency-critical

environments, such as VNs. To this aim, resorting to the Edge

Computing technology, namely Vehicular Edge Computing

(VEC), allowing to deploy edge servers in the proximity of

the vehicles, by gaining from the presence of Road Side

Units (RSUs) is a promising solution. Even though RSUs can

reduce the connectivity latency due to their proximity, they

still have limited computational and communication resources.

This requires optimized resource management strategies by

selecting the proper RSU and the amount of data to be

offloaded. In addition, due to their small coverage range, only

a limited number of vehicles/VUs can access RSU services

without incurring an additional latency (due to, e.g., vehicle

handover, service migration).

To cope with the limited RSU resources and to avoid

the additional latency costs, the VUs can perform a partial

computation offloading, where they can offload a portion of

their computation loads towards edge servers and can compute

the remaining tasks locally [5]–[7]. Finding a suitable RSU for

the remote task processing and jointly optimizing the amount

of data to be offloaded allow to reduce the overall latency.

However, several factors have to be considered while solving

the computation offloading problem in VNs, including VUs

velocity, locations, RSU capacity, RSU coverage, RSU density,

environmental conditions, nature of roads, etc. In addition,

VUs often demand services with a target Quality of Services

(QoS) level, such as critical latency requirements, as well as an

increased requirement of energy saving mechanisms. Modern

and future vehicles are often based on electrical engine, not

to name the recently introduced micro-mobility solutions,

where energy saving is a condition. In addition, mobility in

2

VNs adds a further complexity dimension during the service

provision and needs to be handled carefully. Consequently, the

computation offloading problem in VNs is a complex problem

to be solved [8].

Machine Learning (ML) is a class of algorithms recently

gaining lots of attention due to their ability in managing large

amount of data for solving complex decision problems [9].

Their effectiveness has been recently demonstrated in wireless

communication networks to solve complex problems, e.g.,

communication resource management and allocation, spectrum

management, power control, base station switching [10], [11].

In traditional centralized ML approaches each agent sends its

data to a centralized entity, e.g., a centralized cloud server or a

base station, that is in charge of gathering data for the learning

process. Several issues, like users’ privacy concerns, limited

communication resources and a limited amount of energy

supply, have narrowed the use of centralized approaches in

wireless communication environments. In [12], the authors

proposed a novel approach, named Federated Learning (FL)

with the potential of avoiding the previously discussed short-

comings. In the case of FL, instead of sending raw data to the

centralized entity, users limit their communication only to the

ML parameters of the locally trained model. The centralized

servers collect the updates from the agents and create the

new global update parameters, and send them back to the

users. During the FL training phase, the device can participate

in several communication rounds aiming at refining the ML

model. Each communication round utilizes communication

and computing resources.

When applying FL to the vehicular scenario some issues

should be considered. On one side, VNs are affected by

the limited coverage of RSUs, posing some challenges to

the offloading procedure. On the other side, FL requires a

centralized node able to gather the information from all the

vehicles. In the case of RSUs acting as a centralized server for

the FL process, only a reduced number of VUs can participate

in the training process due to the RSU coverage limitations. In

the past, it had been proven that FL process convergence cost

(in terms of latency) can be largely impacted by the number

of FL devices participating in it [13]. Recently, air-ground

integrated networks are increasing their importance allowing

the integration of an aerial communication network, composed

of several Low and High Altitude Platforms (LAPs and HAPs),

with the terrestrial communication networks, e.g., VNs [14].

HAPs, such as aircrafts, balloons, and airships, have several

advantages including a larger coverage area, renewable power

source, and long endurance, allowing to help VNs to cope

with the stringent user requirements [15]–[17]. In addition,

HAPs can be a viable option with respect to the satellite

systems with a considerable reduction in the round trip time,

low deployment costs, and favorable channel conditions. Thus

HAPs can act as a powerful centralized entity with a more

global view during the implementation of an FL in VNs

scenarios.

During the FL process, resource-constrained wireless nodes

are in charge of implementing ML algorithms to infer useful

information from their datasets. FL process can converge to a

predefined loss function value after a certain number of com-

munication rounds [18], defining the FL process performance.

However, if on one side each FL round helps in terms of

convergence, it also introduces an additional cost in terms of

computational and communication resources to the resource-

constrained devices. As a result, there is a trade-off between

the FL process accuracy and the training cost, which needs to

be explored for resource-constrained communication networks

like VNs.

First, we aim at defining a FL-based platform assisted by

the HAPs, acting as FL servers, to find a solution for the

computation offloading problem in VNs. To this aim, we have

considered a three-layer network architecture composed of

VNs, RSUs, and HAPs. The first layer contains several VUs,

characterized by limited computation and storage resources.

They can communicate with the RSUs within a specific range

and with at least one HAP. The layer two is composed of RSUs

having richer computational and storage capabilities. They can

serve as a computation offloading platform for vehicles. In

layer three, we use HAPs as FL servers.

The system aims at performing task offloading within a FL

architecture. The FL framework enables learning information

that is useful for the computation offloading decision phase.

Although FL assists a better decision making in computation

offloading procedure, it imposes some cost in terms of energy

and delay. Since FL consumes some resources in terms of

time and energy, hence impacting on the resources left to the

users willing to offload, we aim at optimizing the resource

sharing between learning and offloading phases. This is done

by allocating sufficient time to both phases, by considering the

learning convergence toward the optimal offloading parameters

estimation. It has to be clarified that in this work we are

not investigating the learning procedure, hence we resort to

a simplified FL-inspired distributed approach for modeling

the interactions of the FL process. In particular, given the

limited available resources of each vehicle and RSUs, we aim

at jointly optimizing the delay and energy performance of VNs

for both FL and offloading phases.

The system has been solved by resorting to a clustering

approach, where three policies have been defined. While in

the first, all the VUs requesting the offloading service perform

also the FL process, aiming at optimizing them jointly, in

the second, a probabilistic clustering policy considers that

only a subset of the VUs participates to the optimization

process, modeling the possibility that some of the VUs are not

capable of performing the FL. As third policy, we still select

a subset of VUs while based on their position within the RSU

coverage area. The clustering policies are also compared with a

distributed policy where each VU acts independently. Further,

a Genetic Algorithm (GA) from the family of evolutionary

computing methods is considered for solving the previously

introduced policies.

The main contributions of this paper can be summarized in:

• We define an air-ground integrated FL-inspired dis-

tributed learning platform for enabling a run-time eval-

uation of the computation offloading parameters. We

consider the HAPs as FL servers and VUs as distributed

FL devices/clients, while the RSUs act as processing

3

devices accepting computation offloaded by the VUs

acting as sources.

• We model the joint learning and offloading process

through its delay and energy consumption, and then we

define the joint delay and energy minimization problem

as a constrained non-linear optimization problem. The

main aim is to select the optimal number of FL process

iterations for each VU given a target delay requirement,

while keeping the energy consumption under a certain

level.

• Three RSU based clustering approaches are introduced

for solving the problem (i.e., full clustering, probabilistic

clustering, distance-based clustering) along with a VU-

based distributed approach.

• A GA evolutionary computing method is proposed for

solving clustered and distributed approaches. Two other

benchmark methods and one simple Heuristic approach

based on a reduced size solution space are also considered

for performance comparison.

• Performance evaluation is carried out under different

VEC environments where the effectiveness of the pro-

posed scheme is shown.

The remaining parts of this paper are organized as follows.

In Section II, the main related works in the area are discussed,

while Section III presents the system model and define the op-

timization problem to be solved. In Section IV, the clustering

policies and the GA-based solution method are discussed. In

Section V, the numerical results obtained through computer

simulations are provided and analyzed. Finally, in Section VI

the conclusions are drawn.

II. RELATED WORKS

The importance of VEC in the VN scenarios has been

highlighted in several survey papers; to this aim [19], [20]

constitute two outstanding starting points for understanding the

working scenario and main challenges. Among several chal-

lenges, the partial computation offloading problem in the VEC-

enabled VNs for the latency-critical applications is considered

by several authors. In [3], a joint load balancing and offloading

problem is formulated as a utility maximization problem by

considering the latency constraints and solved through a low

complexity algorithm. The computation offloading problem in

heterogenous VEC scenarios is studied in [5], where multi-

armed bandit theory is applied, and online and off-policy

learning algorithms are proposed for the network selection

problem. Some attempts have also been made for optimizing

the energy cost while performing computation offloading op-

erations in VN. In [21], a low-complexity heuristic method is

proposed based on the cost-effectiveness of allocated resources

and energy consumption for computation offloading in VEC

scenarios. In [22], authors have studied the energy-efficient

workload offloading problem in VEC and propose a low-

complexity distributed solution based on consensus alternating

direction method of multipliers. Many authors have treated

the latency and energy cost minimization problems separately

even though it is proven that there is a clear trade-off between

latency and energy consumed during computation offloading

towards edge servers [23]. Only a few attempts have been

made for joint minimization of energy and latency in vehicular

scenarios. One such approach can be found in [24] where the

energy-efficient dynamic computation offloading and resources

allocation scheme for minimizing the joint energy and latency

cost in a Vehicular Fog Computing scenario is proposed.

In the recent past, LAPs and HAPs usage as edge com-

puting nodes in vehicular scenarios has been proposed by

many researchers for improving the overall system reliability,

service latency, and energy performance. In [25], authors have

introduced a three-layer network architecture by integrating

the HAP and terrestrial edge network for improving the delay

performance of vehicular nodes through computation offload-

ing and caching over HAPs. An edge computing enabled

integrated space-air-ground network platform is proposed and

analyzed in [26] for providing vehicular services into remote

areas with lower latency and the reduced uses of satellite

resources. In [27], a new energy-efficient, UAV-assisted edge

computing framework allowing a joint optimization of the

trajectory and CPU frequency of fixed-wing UAVs along

with offloading scheduling is proposed. In [28], authors have

proposed a UAV-assisted VEC system architecture for enabling

6G vehicle-to-everything (V2X) applications. This work also

highlights the main challenges in the UAV-assisted VEC sys-

tems including its use for achieving distributed intelligence at

the edge, for implementing vehicular applications and services.

In recent times, several works have highlighted the impor-

tance of the FL process in VEC-enabled scenarios. In [29],

the authors listed several applications, research challenges, and

future directions for the FL research in VNs. A mobility-aware

FL scheme for edge caching in VN is proposed in [30], which

can protect users’ privacy, reduce communication costs, and

support the high mobility of vehicles. In [31], authors have

provided a brief survey of applications and challenges while

using the FL process in vehicular scenarios.

While implementing FL over resource-constrained net-

works, it is important to consider a trade-off between available

resources and the FL performance. This issue has become

clear since few years when researchers started to analyze

the FL process optimization problem in terms of computing

and communication resource allocation, user scheduling, en-

ergy performance, latency performance. Joint energy-efficient

transmission and computing allocation for the FL process

over wireless communication networks has been investigated

in [18]. In [32], the authors have addressed the joint resource

allocation and user selection problem for FL process perfor-

mance improvement. In [33], joint user association, service

sequence, and task allocation problem for minimizing the

weighted sum of the energy and time consumption over a

MEC-enabled balloon HAP network is addressed. In [34], FL

device scheduling policies, taking into account the channel

conditions and the significance of the local model updates,

are provided for better network performance.

Lately, similar analyses have been carried out in the VN

scenarios, with the aim of improving the FL process accuracy

with a limited cost. In [35], the authors have studied FL in a

VEC scenario and have proposed an approach for selecting the

best quality models during the training phase for tackling the

4

diverse data quality and corresponding information asymmetry

issue of the FL process. An edge computing-based joint client

selection and networking scheme for vehicular IoT is presented

in [36]. The importance of the trade-off between the accuracy

of the global model and the communication overhead of FL

in vehicular environments is also highlighted.

In several of these works, authors aimed at optimizing the

FL process training phase without paying much attention to the

application latency requirements. Also, the mobility scenarios

in VNs can have a significant impact on the FL process and

are required to be explored. Therefore we aim to perform a

joint optimization of FL and computation offloading processes

in VEC scenarios by considering the latency constraints while

keeping the energy consumption reduced.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an integrated air-ground network composed of

one HAP, a set V = {v1, . . . , vm, . . . , vM} of M VUs, and a

set R = {r1, . . . , rn, . . . , rN} of N RSUs, placed in the area,

supposed to be modeled as a two-lane road scenario.

The generic mth VU, supposed to move in either of the two

directions, is characterized by a processing capability equal to

cv,m Floating Point Operations per Second (FLOPS) per CPU

cycle, while its CPU frequency is fv,m. Each VU is supposed

to be able to communicate on a bandwidth Brsu
v,m during a

terrestrial communication. On the other hand, while commu-

nicating with the HAP in the non-terrestrial communication

network, it is supposed to communicate with a bandwidth

BHAP
v,m . Many new vehicular applications and services, includ-

ing autonomous driving, online gaming, multimedia content

streaming infotainment services, etc., come with strict ap-

plication latency requirements. Such latency constraints need

to be taken into account while solving vehicular networks

problems [22], [37]. Therefore, in this work, the mth VU is

supposed to generate tasks to be processed, where the task

xm is identified through the tuple ⟨Dxm
,Ωxm

, T̄xm
⟩ where

Dxm
is the task size in Byte, Ωxm

are the requested CPU

execution cycles and T̄xm
is the maximum latency of the

requested service.

The nth RSU, supposed to be in a fixed position, is char-

acterized by a processing capability equal to cr,n FLOPS per

CPU cycle, with CPU frequency fr,n, and communication ca-

pabilities, supposed to be identified through a communication

technology able to work on a bandwidth Br,n and covering

an area with radius Rr,n. Each RSU provides computation

offloading services to the VUs within its coverage area. In

addition, the area is supposed to be under the coverage

of one HAP equipped with an edge computing server with

much superior computation capabilities compared with the

RSU/VUs [25]. Moreover, we consider multi-beam antenna

forming techniques, placed at an altitude of hHAP above the

ground, where each antenna beam is supposed to cover a

geographical area of radius RHAP and having a communication

bandwidth BHAP. In the following we will refer to a single

beam as the coverage of the HAP. It should be noted that

though HAP coverage is reduced to a single beam for notation

simplicity, our approach can easily be scaled for the overall

HAP coverage with multiple beams.

Fig. 1. System Architecture

Fig. 1 highlights the main system elements of considered

network architecture. It is worth to be noted that we have

considered only one centralized HAP in the following. In a

realistic scenario, for having a better fault tolerance, it can be

complemented by ground-based 5G base stations (5G-gNB)

or replaced by a decentralized HAP network, composed by

multiple HAPs.

A. Vehicular Mobility Model

The generic mth VU is supposed to be located at position

{xv,m(t), yv,m(t)} at time t. Each vehicle is supposed to move

along the x-axis, defining the directions of the two-lane road,

with a speed v̄m, supposed to be constant. The nth RSU is

considered to be in a fixed position {xr,n, yr,n}. Hence, it is

possible to define the remaining distance within which the mth

VU remains under the coverage of the nth RSU as,

Πm,n =
√

R2
r,n − (yr,n − yv,m)

2 ± (xr,n − xv,m) (1)

where Rr,n is the coverage radius of the nth RSU and ±
identifies the two possible directions taken by the mth VU.

It is worth to be noticed that the dependency on t in (1) has

been omitted for a better clarity; moreover, we assume that it

is calculated at a time instant t when the mth VU requests

an offloading service. In addition, it is worth to be noticed

that (1) is valid only if the mth VU is within the nth RSU

coverage area.

The time available by the mth VU before leaving the nth

RSU coverage, i.e., sojourn time, is defined as [6]:

T soj
m,n =

Πm,n

v̄m
(2)

Similarly, supposing that the center beam of the HAP

coverage on the ground is in a fixed position {xHAP, yHAP}, it

is possible to define the remaining distance within which the

mth VU remains under the HAP beam coverage as:

Πm,HAP =

√

R2
HAP − (yHAP − yv,m)

2±(xHAP − xv,m) (3)

which is valid only if the mth VU is within the HAP coverage

area as well. Hence, the HAP sojourn time can be defined as:

T soj
m,HAP =

Πm,HAP

v̄m
. (4)

In Fig. 2, the working scenario is depicted, where we

suppose, as an example, the presence of two VUs (i.e.,

5

Fig. 2. VU Mobility Scenarios and Corresponding Distance Matrices

VU1 and VU2) moving in opposite directions, where VU1

is traveling towards right and VU2 moving towards left.

The available distance for each of the VUs before passing

through the coverage area of RSU is determined by using (1).

A similar analysis can be performed for determining the

distances concerning the HAP.

B. Partial Offloading Model

The VUs are supposed to be able to offload their tasks to the

RSUs within their connecting area. In order to minimize the

time spent for the offloading process we assume that the mth

VU is able to split its task in two portions and offload a portion

αm ∈ [0, 1] to any of the RSUs within its connecting area1,

while the remaining (1− αm) can be locally computed [23].

1) Task Offloading Process: When mth VU selects the nth

RSU for offloading its task, the process is composed of the

data transmission toward the selected RSU, task processing at

the RSU, and the reception of computed data back at the VU.

Each of these steps consume some amount of time and energy,

as detailed in the following.

In the following, we resort to the Shannon capacity formula

for evaluating the data rate between any node i and j as a

function of the distance between them, defined as:

ri,j(Bi, di,j) = Bi log2

(

1 +
P tx
i · h(di,j)
N0

)

(5)

where P tx
i is the transmission power of the generic device i,

h(di,j) is the channel gain at a distance di,j between the device

i and the device j, and N0 = NTBi is the noise power, where

NT and Bi are the noise power spectral density and bandwidth

associated to the ith device during communication.

a) VU-RSU Communication: The total time and energy

required for full offloading of task xm from the mth VU

towards the nth RSU is given by,

T xm,tx
m,n =

Dxm

rm,n(Brsu
v,m, dm,n)

, Exm,tx
m,n = P tx

m · T xm,tx
m,n , (6)

where, rm,n(B
rsu
v,m, dm,n) is the data rate between mth VU and

nth RSU, that depends on the available radio resources i.e.,

Brsu
v,m, and the distance between two devices, i.e., dm,n. Also,

P tx
m is the transmission power of m-th VU while transmitting

data towards the RSU.

1More specifically to be managed by the co-located server.

b) RSU Computation: The task computation at the RSU

side depends on the CPU execution cycles requested by the

task, i.e., Ωxm
and available RSU processing resources, i.e.,

cr,n and fr,n; hence, the processing time can be modeled as:

T xm,c
n =

Ωxm

cr,nfr,n
. (7)

Here, we assume that the RSUs are connected to the electrical

grid, hence their energy cost is negligible, while the VUs are

in idle state, whose energy consumption can be neglected as it

can be considered an unavoidable basic energy consumption.

c) RSU-VU Communication: The completion of the task

offloading process is performed by sending back the result to

the VU. The time and energy required by the mth VU for

receiving the result from nth RSU is given by,

T xm,rx
m,n =

Dxm,rx

rn,m(Br,n, dn,m)
, Exm,rx

m,n = P rx
m · T xm,rx

m,n , (8)

where, Dxm,rx is the task size processing result at the RSU

side, and rn,m(Br,n, dn,m) is the downlink data rate between

the nth RSU and the mth VU. P rx
m is the reception power of

m-th VU while receiving data from the RSU.

In general, RSUs are located in the proximity of VUs,

resulting in negligible task propagation time during uplink and

downlink communication. Therefore, in this work, we do not

consider the propagation time when modeling the delay of

the task offloading process. Thus, the total time and energy

required for the complete task offloading process is,

T̂ off
m,n = T xm,tx

m,n + T xm,c
n + T xm,rx

m,n (9)

Êoff
m,n = Exm,tx

m,n + Exm,rx
m,n (10)

Since we assume that the mth VU offloads a portion αm of

the task xm towards the nth RSU, the overall time required

to perform the offloading process is:

T off
m,n(αm) = αm · T̂ off

m,n (11)

where we suppose that both communication and processing

latency terms scale linearly. Similarly, the overall energy

consumed by the mth VU for performing the offloading

process is:

Eoff
m,n(αm) = αm · Êoff

m,n (12)

2) Local VU Computation Process: Each VU is able to

locally compute its task and the amount of time and energy

required is based on its processing resources, i.e., cm and fm.

Hence, the local processing time and energy consumption is:

T xm,c
m =

Ωxm

cv,mfv,m
, Exm,c

m = P c
m · T xm,c

m , (15)

where, P c
m is the computational power used during local task

computation at the mth VU. Due to the partial offloading, the

amount of time and energy required for the local computation

at the mth VU is:

T loc
m (αm) = (1− αm)T xm,c

m (16)

Eloc
m (αm) = (1− αm)Exm,c

m (17)

6

where αm is the portion of the task to be offloaded by the

mth VU; hence, the overall processing time for the task xm
results:

T xm
m (αm) = max

{

T off
m,n(αm), T loc

m (αm)
}

(18)

where T off
m,n(αm) is the time needed for offloading the portion

of a task αm ·xm to the nth RSU, while T loc
m (αm) is the time

for locally processing the remaining task (1−αm) ·xm by the

mth VU. We suppose that offloading and local computation

can be performed in parallel. Similarly, the overall processing

energy for the task xm results:

Exm
m (αm) = Eoff

m,n(αm) + Eloc
m (αm) (19)

where Eoff
m,n(αm) is the energy consumed offloading the

portion of a task αm · xm to the nth RSU, while Eloc
m (αm) is

the energy consumed during locally processing the remaining

task (1− αm) · xm on mth VU.

3) Partial Offloading Problem: The partial computation of-

floading problem corresponds to set the offloading parameters

αm in an optimal way such that service latency (T̄xm
), sojourn

time (T soj
m,n) and the overall energy consumption constraints

are respected. To this aim, we assume that in an energy

efficient partial offloading operation, the energy spent for the

task xm (Exm
m (αm)) with offloading parameter αm, is less

than the amount of energy required to completely compute

it locally (i.e., Exm,c
m), since otherwise offloading would not

be beneficial. Therefore, the joint latency and energy con-

strained optimization problem corresponds to find the optimal

A = {α1, . . . , αm, . . . , αM} parameters such that:

P1 : A∗ =

argmin
A

{

1

M

M
∑

m=1

(η1T
xm
m (αm) + η2E

xm
m (αm))

}

(20)

subject to the following constraints,

T xm
m (αm) ≤ T̄xm

, ∀m (21a)

T off
m,n(αm) ≤ T soj

m,n, ∀m, ∀n (21b)

Exm
m (αm) ≤ Exm,c

m , ∀m (21c)

N
∑

n=1

a(m,n) ≤ 1, ∀m ∈M (21d)

M
∑

m=1

a(m,n) ·Brsu
v,m ≤ Br,n, ∀n ∈ N (21e)

0 ≤ αm ≤ 1, ∀m ∈M (21f)

0 ≤ η1, η2 ≤ 1, (21g)

where (21a) shows that the total task processing time for

each VU should be limited by the task latency requirement

and (21b) represents that each VU should complete the com-

putation offloading process while it is in the RSU coverage

for avoiding additional latency costs. From (21c), the overall

processing energy of task should be upper bounded by the

amount of energy required to compute it locally. A binary

assignment variable a(m,n) is considered equal to 1 if mth

VU is assigned to the nth RSU, and 0 otherwise. According

to (21d), each VU can offload tasks to no more than one RSU,

Fig. 3. Proposed scheme for the joint FL and task-offloading processes
optimization.

while (21e) shows that the bandwidth resources available for

all active VUs2 in a particular RSU coverage is upper bounded

by its bandwidth. Eq. (21f) limits the offloading parameter

value between 0 and 1. Moreover, in (21g), η1 and η2 are two

weight coefficients between 0 and 1, for balancing latency and

energy consumption.

In a real scenario the amount of data to be offloaded

from each VU towards an RSU while respecting the system

constraints is hard to be estimated; several factors, including

VUs position, velocity, directions, RSU resources, task re-

quirements, surrounding environmental conditions, make the

problem hard to be solved. Many of these parameters are

hard to be accessed given their stochastic behaviors. Therefore,

finding a set of optimal offloading parameters (A∗) in a highly

dynamic environment like VN is a challenging problem to

be solved, and advanced optimization methods are needed.

Belonging to the class of the ML approaches, FL has been

recently introduced as an effective way for performing data

augmentation and significantly reducing the communication

overhead in comparison with direct data-sample exchanges,

allowing also to enhance VUs privacy issues. In order to

properly address the latency and energy constrained offloading

problem defined in (20), we propose to exploit a FL framework

for estimating the set A, composing the offloading portions of

all VUs, based on the VU side parameters.

In Fig. 3 we provide a more detailed step-by-step view of

the considered joint FL and task offloading process optimiza-

tion problem and the proposed solution methodologies; it is

possible to notice that the VUs parameters act as input for

the FL-inspired distributed process (Step 1), whose goal is to

properly set the number of iterations to be performed (Step 2)

in order to have a proper solution for setting the offloading

parameters (Step 3) to be later used by each VU (Step 4).

C. Federated Learning Model

FL is based on the idea that the same ML algorithm is

present at both FL server and FL clients sides, where a

centrally located FL server assists distributed clients during the

learning process. Instead of only executing the ML algorithm

in a centralized server node, it is executed in a federated way

among all the involved nodes through the exchange of a set

2We assume that only a subset of the VUs, named active, have data to
process, and potentially to be offloaded to an RSU.

7

of parameters defining the weights of the implemented ML

algorithm. To do this, the FL process is composed of several

steps: information exchange between FL-server and devices

for initializing the learning model over devices, local device

training, parameters exchange over wireless links between de-

vices and the FL-server, parameter collection and aggregation

on the server [38]. In the FL process, we assume that the HAP

acts as FL server, assisting the VUs acting as FL clients for

making the offloading decision. For each offloading request,

the VUs perform numerous FL iterations with the HAP aiming

at properly setting the offloading portion toward the selected

RSU. It has to noticed that the HAP computation infrastructure

can be implemented by resorting to the function virtualization

approach through different virtualization technologies, e.g.,

virtual machines, containers, hyper-visors, for performing the

FL process. Moreover, the interaction with FL-clients can

happen through predefined interfaces (e.g., implementing the

REST API technology) allowing a smarter interaction [39].

However, such considerations are beyond the scope of this

work, that instead mainly focuses on the optimization of the

joint FL-offloading framework.

Even though FL allows to reach a global optimum in

distributed environments, the dynamicity of VN scenarios

introduces an additional challenge. Indeed, FL process cannot

be considered as a granted process, as it consumes resources

by itself. Hence, FL is executed at the cost of a reduction

of resources that can be given to the offloading process. It

is however, clear from past studies that the number of FL

iterations required for reaching a predefined convergence value

can be upper bounded [18], [38], [40], [41] depending on

several factors, including the ML model, number of users

participating in the training process, number of local iteration

on the device, type of radio environment, quality of data,

etc. Therefore, without loss of generality, we consider that

after ρopt FL iterations each VU will be able to estimate the

optimal offloading parameter αopt
m , where ρopt = K

M̄
; K can be

considered as a numerical constant setting the overall number

of FL iterations required to achieve the convergence, while M̄
is the number of VUs participating in the FL training process,

so higher the participating VUs, lower the required iterations,

respecting the FL process behavior.

In this work, we assume the learning process converges

after ρopt FL iterations, when each VU is able to estimate

the offloading parameters3. For the purpose of this paper, we

consider that, in case we stop the FL process in advance, some

estimation error should be considered, as later explained. Since

each FL iteration requires a certain amount of communication

and computational resources, performing ρopt iterations over

all VUs can be challenging and sometimes might not be

feasible given the limited VUs resources and the latency

constraints imposed by both service requirements and sojourn

time. The additional energy cost of each FL iteration can

also limit the number of FL iterations performed by VUs.

Therefore, in this work we consider that the generic m-th VU

is able to perform up to ρm FL iterations with ρm ≤ ρopt.

3In the case of a practical system, the convergence can be bounded by some
stopping criteria, e.g., loss function value.

The set I = {ρ1, · · · , ρm, · · · ρM} contains the number of FL

iterations performed by each VU.

In order to understand the impact of the FL process we

can now introduce the FL iterations latency, the corresponding

energy consumption and the joint optimization model.

1) FL Computation Model: The FL computation corre-

sponds to the local training of the ML model based on the

on-device dataset. In local device training, the mth VU has

to compute the local parameter set wit
v,m through the dataset

having size Km data samples; if we assume that, for every

iteration, the total number of FLOPs required for each data

sample d is ψd, the time and energy consumed during FL

process at the mth device is given by [42]:

T FL,c
m =

∑Km

d=1 ψd

cv,mfv,m
, EFL,c

m = P c
m · T FL,c

m . (22)

We suppose for simplicity that the on-device FL processing

time and energy is the same for every iteration. Conversely, the

FL server is limited to the model aggregation, whose time and

energy is considered as negligible given the abundant available

resources at HAP.

2) FL Communication Model: In FL, the devices commu-

nicate the local model updates towards the HAP in uplink

and receive back the updated global model parameters in

downlink. Both uplink and downlink communication processes

are characterized by transmission and propagation delays, due

to the high distance between VUs and HAP. The propagation

time required for each FL iteration is given by,

T FL,prop
m,it = 2 · dm,HAP

σ
, ∀m (23)

where σ is the propagation speed in the considered transmis-

sion medium, dm,HAP is the distance between the mth VU

and the HAP, which can be calculated by using HAP altitude

(hHAP) and the mth VU location through simple algebraic

passages, and the multiplication by 2 is due to the two-way

propagation delay. During the FL processing, at each iteration

it the mth VU sends the parameters set wit
v,m to the HAP.

Supposing that |wit
m| represents the data size of the parameters

set expressed in bits [32], the uplink transmission time and

energy for the FL parameters in the itth iteration is:

T FL,tx
m,it =

|wit
v,m|

ritm,HAP(B
HAP
v,m , dm,HAP)

, EFL,tx
m,it = P tx

m · T FL,tx
m,it ,

(26)

where, ritm,HAP is the uplink transmission rate between mth

VU and the HAP during the itth iteration, which is a function

of the VUs bandwidth (BHAP
v,m), and the distance (dm,HAP)

between the mth VU and the HAP, modeled through the

Shannon capacity formula under Rice fading conditions [43].

Since the HAP is accessed by multiple VUs, we assume for

simplicity that the HAP bandwidth is equally shared among

the connected VUs. Also, P tx
m is the VUs, transmission power

while communicating with HAP.

In general, HAP needs to wait for all training VUs to trans-

mit their model parameters before performing the averaging

operation. Therefore, the FL transmission time for the itth
iteration is given by,

T FL,tx
it = max

m

{

T FL,tx
m,it

}

, ∀m (27)

8

The HAP performs the aggregation of the received model

parameters (e.g., FedAvg [38]) to create a global parameter

vector wit
G for the next iteration and transmits it back towards

VUs over the downlink communication links. Therefore, in

downlink, the global parameters transmission time and energy

are given by,

T FL,rx
m,it =

|wit
G|

ritHAP,m(BHAP, dHAP,m)
, EFL,rx

m,it = P rx
m · T FL,rx

m,it (28)

where ritHAP,m is the downlink transmission rate between the

HAP and the mth VU during the itth iteration when the global

parameter set is broadcast. P rx
m is the power consumed while

receiving data from HAP. Hence, the total time and energy

required for a single FL iteration can be detailed as:

T FL
m,it = T FL,c

m + T FL,prop
m,it + T FL,tx

it + T FL,rx
m,it (29)

EFL
m,it = EFL,c

m + EFL,tx
m,it + EFL,rx

m,it (30)

D. Joint Offloading and Federated Learning Model

Since the FL process is based on multiple iterations for

exchanging the ML model parameters, it is possible to write

the total time and energy for the FL process when focusing

on the mth VU as,

T FL
m (ρm) =

ρm
∑

it=1

T FL
m,it, EFL

m (ρm) =

ρm
∑

it=1

EFL
m,it (31)

where ρm is the number of FL iterations performed by mth

VU, T FL
m,it is the amount of time spent, and EFL

m,it is the amount

of energy consumed for the itth iteration of the FL process

depending on both FL communication and computation per-

formance. The time needed for completing both FL iterations

and task processing has to be constrained by the maximum

service latency requirement, given by:

Tm(ρm, αm) = T FL
m (ρm) + T xm

m (αm) ≤ T̄xm
(32)

Also the energy consumed for completing both FL iterations

and task processing has to be constrained by the energy

required to compute a complete task locally, given by:

Em(ρm, αm) = EFL
m (ρm) + Exm

m (αm) ≤ Exm,c
m (33)

Due to the dynamicity of the vehicular environment, com-

putation offloading and FL process latencies should also be

bounded by the VUs sojourn times under RSU and HAP beam

coverage. Since the HAP is acting as an FL server, the whole

FL phase should be completed by the HAP sojourn time,

hence:

T FL
m (ρm) ≤ T soj

m,HAP (34)

In addition, each VU should finish the offloading process

within the RSU sojourn time. Thus,

T FL
m (ρm) + T off

m,n(αm) ≤ T soj
m,n (35)

It is worth to be noticed that the sojourn time does not affect

the overall processing time, while only the offloading time,

since the local computation can be performed also out of the

RSU coverage.

1) Problem Formulation: Following (11), (16), (18), (29),

(31), and (32) the total time Tm(ρm, αm) required for both

phases (i.e., FL and task processing) can be determined. Sim-

ilarly, from (12), (17), (19), (30), (31), and (33) the total energy

Em(ρm, αm) required for both phases can be calculated. The

proposed optimization model aims at minimizing the total

time and energy by properly setting the offloading parameters

and the FL iterations used for determining the offloading

parameters itself. Hence, the problem in (20) can be rewritten

as:

P2 : (I∗,A∗) =

argmin
I,A

{

1

M

M
∑

m=1

(η1 · Tm (ρm, αm) + η2 · Em (ρm, αm))

}

(36)

subject to the constraints (21d)-(21g), (32)-(35), and,

M
∑

m=1

BHAP
v,m ≤ BHAP (37a)

0 ≤ ρm ≤ ρopt ∀vm ∈ V (37b)

where (32) is the service latency requirement reformulat-

ing (21a) including the FL processing time. Also, (33) is

the reformulated energy constraint defined in (21c) with FL

process energy. Eq. (34) provides an upper bound for the

FL process depending on the HAP sojourn time and (35) is

the reformulated version of (21b), defining the upper bound

of both task offloading and FL process as the RSU sojourn

time: each vehicle should offload the computation data to the

RSU and receive results before it leaves its coverage area.

According to (37a), the sum of bandwidth resources available

for all VUs in non-terrestrial communication links should be

upper bounded by the HAP bandwidth resources. Eq. (37b)

upper bounds the number of iterations performed by each VU

to ρopt.
2) Federated Offloading parameter estimation: Solving the

problem defined in (36) requires finding two sets of op-

timization variables (I,A) and thus is hard to be solved.

However, (I,A) are not two separate sets of variable. As

more iterations are performed, higher is the reliability with

which the offloading parameter is estimated through the FL

process. Hence, the offloading parameter αm can be modeled

as function of the number of FL iterations performed with

the aim of estimating the optimal αopt
m , i.e., αm = αm(ρm).

Without loss of generality, we assume in the following that in

case the m-th VU cannot participate in the FL process, the

offloading parameter is α0
m = αm(ρm = 0), while in case it

can perform ρopt iterations, the estimated offloading parameter

is αopt
m = αm(ρopt). In any other case, the estimated value

αm is a function of ρm FL iterations that are performed by

the mth VU. The exact relationship between αm and ρm is

hard to be set since it depends on several factors such as FL

environment, number of VUs participating in the FL process,

the communication medium between FL clients and server,

etc. To the best of our knowledge there is no model in the

literature aiming at setting the aforementioned relationship.

Therefore, without loss of generality, we consider here that

9

0 0.2 0.4 0.6 0.8 1

Fig. 4. Truncated Normal Distribution of αm as a function of the FL
iterations.

the estimated αm can be modeled as a stochastic value whose

distribution follows a truncated normal distribution with mean

µ and variance σ2, where 0 ≤ αm ≤ 1, since αm is bounded

between 0 and 1 by definition. Therefore, it is possible to

define the probability density function fαm
(·) of αm as,

fαm
(αm;µ, σ)=







1
σ

ξ(αm−µ
σ)

∆(1−µ
σ)−∆(−µ

σ)
if 0≤αm≤1

0 otherwise
(38)

where, ξ(·) and ∆(·) are, respectively, the probability density

function of the related standard normal distribution and its

cumulative distribution function, i.e.,

ξ(ω) =
1√
2π
e

(

−ω2

2

)

, ∆(κ) =
1

2

(

1 + erf

(

κ√
2

))

.

In this work we assume that the mean value of the distri-

bution of αm, i.e., µ, and its variance, σ2, are equal to

µ = αopt
m (ρm), σ2 =

(

γ · ρ
opt − ρm
ρopt

)2

(39)

where γ is a numerical constant, used for controlling the

variance of the model. It is worth to be noticed that the

variance is defined in a way that higher ρm, lower is the

variance. This corresponds to say that increasing the number of

iterations reflects in a more reliable estimation of αm provided

that ρm ≤ ρopt. Moreover, the higher the iterations to be

performed, the higher is the time spent in the FL phase, so

the lower is the time left for the offloading phase. This is

the reason why µ is also function of the iterations. This is

consistent with the FL process where more FL iterations turn

out in a better estimation of the offloading parameter. During

simulations, fαm
(αm;µ, σ) is used for estimating the αm for

every mth VU, whose quality will depend upon the number

of FL iterations performed compared with ρopt. A qualitative

representation is reported in Fig. 4 with ρopt = 25, where as the

number of iterations increases, both the distribution variance

and the average optimal offloading parameter become smaller,

leaving less time for the offloading operation.

According to (35) both FL and task offloading processes

should be completed within available sojourn time. Fig. 5

shows the impact of the constraint (35) on the considered

vehicular environment. In particular, we can notice that at the

beginning, the joint FL and offloading process is bounded by

the sojourn time. As the VU moves, despite some iterations

Fig. 5. FL process impact over the offloading parameter value

Fig. 6. FL and Task processing time sharing.

that are performed, the remaining time for completing the FL

process and starting the offloading is reduced, due to the lower

remaining sojourn time.

From the previous description, it is clear that given a certain

amount of time, we have to trade-off between offloading and

FL processes. Let us introduce now a new parameter, named

βm ∈ [0, 1], modeling the portion of time allocated for the FL

process of the mth VU. If βm = 0, the whole time is allocated

for the task processing phase, while if βm = 1 the mth VU

uses the whole available time for the FL phase. Considering

the target latency of the tasks generated by each VU as a

reference time interval, it is possible to set the maximum

number of possible iterations for the FL process:

ρm(βm) s.t. T FL
m (βm) =

ρm(βm)
∑

it=1

T FL
m,it ≤ βm · T̄xm

(40)

where B = {β1, . . . , βm, . . . , βM}. Each VU performs nu-

merous FL iterations aiming at finding the optimal offloading

amount to be transferred towards RSU, where any additional

FL iteration reduce the variance in (38), i.e., its reliability,

while reducing its average value.

Fig. 6 shows the available resources for both phases as a

function of βm. As βm increases VU spends more time on

the FL process through additional iterations, which reduces

the available time for the processing phase since both phases

should be completed within the requested service latency.

In the end, the optimization problem defined in (36) can be

rewritten as,

P3 : B∗ = argmin
B

{

1

M

M
∑

m=1

(η1Tm(ρm(βm), αm(βm))

10

+ η2Em(ρm(βm), αm(βm)))

}

(41)

subject to the constraints (21d)-(21g), (32)-(35), (37), (40) and,

0 ≤ βm ≤ 1 ∀vm ∈ V (42)

where (40) limits the maximum number of FL iterations

performed by each VU based on the available FL process time

and, according to (42), βm can take any value between 0 and 1.

IV. PROPOSED SOLUTIONS

The solution space dimension for the problem P3 can be

estimated as SP = Θ(M), where Θ is the number of possible

values taken by βm, i.e., the smaller step size for βm dis-

cretization, the bigger is the solution space. In a certain service

area, the number of VUs requesting services can also be huge.

Therefore, despite being simplified with respect to P2, solving

P3 for the whole set V , even for a discrete solution space,

is computationally expensive and requires exploring a huge

solution space SP; thus sub-optimal approaches operating

on a subspace of SP are required. In order to address the

problem, first, we propose an RSU-based clustering approach

where each RSU performs the optimization for the VUs under

its coverage. As a second scheme, we consider a distributed

approach, where each VU performs the optimization by itself

without considering the surrounding VUs. In both cases, a GA

is proposed as the solution methodology.

In order to simplify the problem we assume that each

VU will be assigned to the nearest RSU for computation

offloading, hence:

a(m,n) = 1 ⇐⇒ n = argmin
n′

{dm,n′} ∀m,n′ (43)

where dm,n′ is the distance between the mth VU and the n′th
RSU. Each VU starts by downloading the FL model from the

HAP and infers the initial offloading parameter α0
m, supposed

to be a random value between 0 and 1.

A. Clustered Approach

In the cluster-based sub-optimal approach we assume that

it is possible to find βm by considering the active VUs (i.e.,

VUs requesting offloading services) under each RSU coverage,

where Mn corresponds to the VUs managed by the nth

RSU. The RSU communication and computing resources are

supposed to be equally shared among all active VUs in its

coverage area. The solution vector Bn = {β1, β2, · · · , βMn
}

is composed by the Mn values for all the VUs connected to

nth RSU. We aim to determine B∗
n, the optimal parameter set

for the nth RSU. The overall optimal B∗ can be determined

by merging the solutions from all RSUs, i.e., B∗ = ∪nB∗
n.

The problem originally formulated in (41) is thus modified as

B∗
n = argmin

Bn

{

1

Mn

Mn
∑

m=1

[η1 · Tm(ρm(βm), αm(βm))

+ η2 · Em(ρm(βm), αm(βm))]

}

(44)

In Algorithm 1 the steps used for the RSU based clustered

optimization are presented. At the beginning, VUs are assigned

to the RSUs based on the minimum distance criterion in (43),

from which the number of VUs requesting services from each

RSU is determined (Line 1-2). After this, the optimal set of

Bn values for all the VUs associated with a given RSU is

determined by using (44) (Line 3-6). In the end, the algorithm

returns the solution set of all RSUs (Line 7).

Algorithm 1 Clustered Approach

Input: N,M, {dm,n}
Output: B∗

1: a(m,n) = 1 ⇐⇒ n = argmin
n
′ {d

m,n
′ } ∀m.

2: Find Mn =
∑M

m=1
a(m,n), ∀n

3: for all n = 1, · · ·N do
4: ∀m ∈ Mn

5: Find B∗

n by solving (44)
6: end for
7: return B∗ = {B∗

1 , · · · ,B
∗

n, · · · B
∗

N}

1) Clustering Policies: In order to better understand the

impact of the clustered approach we have considered three

different clustering policies.

a) Full Clustering Policy (FC): In this policy, all the

active Mn VUs of nth RSU cluster participate to the FL

process before performing offloading, hence,

Mn =

M
∑

m=1

a(m,n) ∀n

b) Probabilistic Clustering Policy (PC): In this ap-

proach, we randomly classify the Mn VUs of nth RSU

cluster into two subgroups M̂1
n and M̂2

n. VUs belonging

to M̂1
n perform FL process with optimal β∗

m determined

through (44) while VUs in M̂2
n performs offloading with

initially estimated offloading parameter α0
m, i.e., βm = 0. By

this policy we would like to understand the impact of the

VUs when participating to the FL process. The classification

of VUs into two subgroups is based on a Bernoulli distribution

where the probability of the m-th VU being in M̂1
n is p, i.e.,

P (m ∈ M̂1
n) = p and the probability being in M̂2

n is (1− p),
i.e., P (m ∈ M̂2

n) = (1− p).
c) Distance-Based Clustering Policy (DBC): In this ap-

proach the selection of the VUs is based on the available

distance before they move out of the RSU coverage. In this

policy we would like to give more importance to those VUs

staying longer within the same RSU coverage; hence, we select

them for performing FL. Therefore for the nth RSU we have:

M̂1
n =

{

m|Πm,n ≥ Π̂, m ∈Mn

}

where M̂1
n are VUs that perform FL iterations before the

computation offloading process with optimal βm determined

through (44). Π̂ is the distance bound used for partitioning

VUs into two groups. The remaining VUs, will not participate

into the FL training process, i.e., βm = 0 and given by,

M̂2
n =

{

m|m /∈ M̂1
n, m ∈Mn

}

such that Mn = M̂1
n ∪ M̂2

n

11

B. Distributed Approach

Due to its dynamic nature, predicting the exact VUs number

and their characteristics even if within the same RSU is

a difficult task. Some of the main reasons include VUs

unpredictable velocity, directions, drivers’ behaviors, different

types of vehicles, etc. Moreover, in many situations, privacy-

protective VUs are reluctant to share their information with

surrounding nodes, limiting the VUs capability for understand-

ing the surrounding environment. In this situation, each VU

has to offload computation data towards RSU without knowing

how many other VUs have already requested the services from

that particular RSU with certain assumptions over available

RSU resources. In such situations, VUs can act selfishly and

assume that no other VUs have requested services from a

selected RSU and its complete resource pool can be used.

Here, we propose a VU-based distributed approach where

VU makes similar assumptions while offloading data towards

RSU nodes. Thus, in the VU-based distributed approach, we

consider that VUs are not aware of nearby competing VUs

and perform the optimization without considering them. The

problem originally formulated in (41), is modified as

β∗
m = argmin

βm

{η1 · Tm(ρm(βm), αm(βm))

+ η2 · Em(ρm(βm), αm(βm))} ∀m (45)

It is possible to notice that in this case we suppose no mutual

influence among different VUs.

C. Genetic Algorithm

We propose a GA-based solution for solving both cluster-

based and distributed approaches. GAs are evolutionary search

methods inspired by the theory of natural selection and genet-

ics. GA process begins with an initial population space (PS)
that constitutes the set of possible solutions (i.e., individuals),

each having a chromosome (C). Through an iterative process,

involving the creation of a new PS with possibly better

individuals at each step, the sub-optimal solution is obtained.

The evaluation process includes the analysis of each C of the

current PS through a fitness function (FF), the selection of

a parent C is based on a selection function (Sf), then the

formation of new individuals by using mutation and crossover

GA operators. In the mutation process, a new C is formed by

altering some of the genes in the selected solution from (PS),
while, in the crossover process, two chromosome sets with

good fitness function constitute a C for the next generation

by combining their genes. Each evaluation creates a better

solution set and finally ends by providing a solution point

with a higher fitness value. More comprehensive information

on GA and evolutionary algorithms can be found in [44], while

here we focus on the main elements for the sake of brevity.

a) Chromosome: In this work, we have considered C
constituted by set of βm ∈ Bn values for the nth RSU. Thus,

each βm ∈ [0, 1] acts as a gene for C.

b) Fitness Function: The FF allows to model the prob-

lem to be minimized considering also the constraints; hence,

it is defined by using the objective function in (44), later

written as f(Bn) for the nth RSU, plus three additional penalty

functions related to the constraints in (32), (33) and (35). The

fitness function FF(Bn) is:

FF(Bn) = f(Bn) + Υ1 ·max(0, C1(Bn))+

Υ2 ·max(0, C2(Bn)) + Υ3 ·max(0, C3(Bn)) (46)

where Υ1, Υ2 and Υ3 are the weighting coefficients for the

penalty values, and:

C1(Bn) =
∑

Mn

(

Tm(ρm(βm), αm(βm))− T̄xm

)

C2(Bn) =
∑

Mn

(Em(ρm(βm), αm(βm))− Exm,c
m)

C3(Bn) =
∑

Mn

(

T FL
m (ρm(βm)) + T off

m,n(αm(βm))− T soj
m,n

)

where C1(Bn) is the additional fitness penalty for VUs not

performing FL and offloading process within the service

latency requirement, C2(Bn) is the penalty for not respecting

the energy constraint defined in (33) and C3(Bn) is the

supplementary penalty for VUs not performing the offloading

process before moving out of RSU coverage.

c) Selection: The selection function Sf used for the

parent selection is based on the roulette wheel selection

technique, where the selection probability for an individual to

be selected depends upon its fitness score. It should be noted

that since our problem is latency and energy minimization,

parents with the lowest fitness are selected at each round for

reproduction stage.

d) Crossover: In the crossover operator, new chromo-

somes (Cnew
1 , Cnew

2) are generated by alternating genes of

the parents (Cold
1 , Cold

2) from a crossover point. Thus, child

chromosomes can be written as

Cnew
1 = ΦCold

1 + (1− Φ)Cold
2 , Cnew

2 = ΦCold
2 + (1− Φ)Cold

1

where Φ is the crossover point uniformly distributed in [Λ, (1+
Λ)], i.e., Φ ∼ U(−Λ, 1 + Λ)

e) Mutation: We have used a Gaussian mutation tech-

nique where selected genes (βm) from a child C can be altered

by adding a random value from a Gaussian distribution, i.e.,

βm → βm+ν, where, ν is a random variable with a Gaussian

distribution, i.e., ν ∼ N (µ, σ2).

Algorithm 2 The proposed GA-based Approach

Input: FF, Gmax,Mn,Φ, ν
Output: B∗

n

1: Generate the initial population space PS with each βm ∈ [0, 1]
2: while i ≤ Gmax do

3: function EVALUATE(PS)

4: Find FF(C), ∀C ∈ PS.

5: end function

6: function SEARCH(PS)

7: Select better fit individuals using Sf

8: end function

9: function CREATE(PS)

10: Generate new Cs through Crossover and Mutation (using Φ, ν).

11: Integrate Cs with current PS and sort them using fitness scores i.e., FF (C)
12: end function

13: Replace current PS with new best set of Cs.

14: i = i + 1
15: end while

16: return B∗

n

12

Algorithm 2 shows the steps used during the implementa-

tion of GA for the clustered approach. The main GA steps

include the evaluation of PS (Line 3-5), selection of better fit

individuals as parent Cs (Line 6-8), generation of new possibly

better fit Cs for the next generation (Line 9-12). The algorithm

terminates after a maximum number of iterations Gmax are

reached. A similar process can be used for the distributed

case by considering the individual VUs, where GA performs

optimization for each m ∈ Mn separately. It is worth to be

noticed that, when GA is applied to the clustered approaches

a set of VUs participates in the GA process. GA process can

produce, for some of these VUs, a solution with βm = 0,

corresponding to exclude such VUs from the FL process. Thus,

inherently, GA process is also able to optimize the clusters’

size by including/excluding VUs from the FL process, if there

is an advantage in terms of cost.

D. Limited Search-based Heuristic Approach (LS-HuA)

In order to compare the results with a simpler while

sub-optimal solution, we propose also an intuitive heuristic

approach where we consider a reduced-size solution space ŜP
through a user-defined parameter θhu representing the number

of possible values taken by the parameter βm. In this way we

are going to optimize the problem while considering only a

subset of possible solutions. For example, in case of θhu = 5,

βm ∈ {0, 0.2, 0.4, 0.6, 0.8}. We do not consider the case with

βm = 1, since it corresponds to completely assign the time

interval to the FL process, resulting in an always infeasible

solution for active VUs having tasks to be offload. The smaller

values of θhu reduces the simulation time, while limiting the

accuracy of a solution provided. On the other hand, larger

values of θhu allow the user to search over the larger SP for

finding an optimal solution (i.e., exhaustive search). Also in

this case βm = 0 corresponds to exclude the mth VU from

the FL process.

Algorithm 3 lists the steps followed during the search

process. It includes the creation of a reduced search space

(Line 1), initializing the cost function value (fhu) that stores

the optimal cost for each iteration (Line 2), and iterating over

all possible solution points (Bn) from ŜP for finding the best

possible solution (Line 3-12). In the end, the algorithm returns

the best possible solution point Bhu
n found through iterations.

In case there is no feasible solution available, VU decides to

offload without performing any FL iteration.

Algorithm 3 Limited Search-based Heuristic Approach

Input: Mn, θhu

Output: Bhu
n

1: Create ŜP = {βn} of size θ
(Mn)
hu

with all possible solution points to be searched

in the reduced-size solution space

2: Initialize fhu = ∞,

3: for all Bn ∈ ŜP do

4: Use (44) for finding total cost f(Bn)
5: Determine all constraint functions values

6: if f(Bn) ≤ fhu and all constraints are satisfied then

7: fhu = f(Bn) and Bhu
n = Bn

8: end if

9: end for

10: if fhu = ∞ (i.e., no feasible solution found) then

11: Bhu
n = {0}1×Mn

12: end if

13: return Bhu
n

E. Optimal Offloading Parameter

Here we aim at finding a closed form expression for the

optimal offloading parameter αopt
m (βm) having set βm. It

should be noticed that this particular analysis is carried out by

considering that all system parameters are known in advance,

which is not the case in reality given the uncertainty of the

environment. Thus the results are used for comparison.

In case we fix βm it is possible to obtain the optimal

offloading parameter αopt
m (βm) by resorting to the equality

conditions in (18), (33) and (35). Resorting to (18), the optimal

offloading parameter (αT1
m) implies that:

T off
m,n(α

T1
m) = T loc

m (αT1
m) (47)

Exploiting (11) and (16), we have the following:

T off
m,n(α

T1
m) = αT1

m · T̂ off
m,n, T loc

m (αT1
m) = (1− αT1

m) · T xm,c
m

Hence, exploiting (47) we have,

αT1
m =

T xm,c
m

T xm,c
m + T̂ off

m,n

(48)

In addition, the equality condition in (35) allows to achieve

an optimal offloading parameter αT2
m (βm) so that,

T FL
m (ρm(βm)) + T off

m,n(α
T2
m (βm)) = T soj

m,n

where,

T off
m,n(α

T2
m (βm)) = αT2

m (βm) · T̂ off
m,n

which returns,

αT2
m (βm) =

T soj
m,n − T FL

m (ρm(βm))

T̂ off
m,n

(49)

In case the mth VU performs the FL process for a longer

time and goes out of the coverage of RSU, i.e., T soj
m,n <

T FL
m (ρm(βm)), it will not be able to offload any data towards

the RSU, i.e., αT2
m (βm) = 0. Hence, (49) can be rewritten as,

αT2
m (βm) = max

{

0,
T soj
m,n − T FL

m (ρm(βm))

T̂ off
m,n

}

(50)

Following the energy constraint defined in (33) equality

holds for a particular optimal offloading parameter αE1
m (βm)

and can be written as,

EFL
m (ρm(βm)) + Exm

m (αE1
m (βm)) = Exm,c

m

Exploiting (12) and (19), we have the following:

Exm
m (αE1

m (βm)) = αE1
m (βm) · Êoff

m,n + (1− αE1
m (βm)) · Exm,c

m

that returns,

αE1
m (βm) =

−EFL
m (ρm(βm))

Êoff
m,n − Exm,c

m

(51)

In such cases where Êoff
m,n > Exm,c

m , performing compu-

tation offloading is not an option since it requires additional

energy and that results into αE1
m (βm) = 0. Therefore, (51) can

be modified to,

αE1
m (βm) = max

{

0,
−EFL

m (βm)

Êoff
m,n − Exm,c

m

}

(52)

13

TABLE I
SIMULATION PARAMETERS

Simulation parameters

HAP Beam Coverage (RHAP) 2 Km

RSU Coverage (Rr,n) 25 m

Task Size (Dxm) 2.5 MB

Task Computation (Ωxm) 103 ×Dxm FLOPS

Task Results (Dxm,rx) 0.5 MB

VU Flops (cv,n · fv,n) 8 GFLOPS

VU Tx. Energy (P tx
m) 1.3 W [23]

VU Rx. Energy (P rx
m) 1.1 W [23]

VU Comp. Energy (P c
m) 0.9 W [23]

RSU Flops (cr,n · fr,n) 80 GFLOPS

HAP Beam Bandwidth (BHAP) 100 MHz

RSU Bandwidth (Br,n), ∀n 10 MHz

HAP Altitude (hHAP) 20 Km [17]

In the end, (48), (50), and (52) are considered for finding

αopt
m (βm) as:

αopt
m (βm) = min

{

αT1
m , α

T2
m (βm), αE1

m (βm)
}

(53)

This procedure is used as a reference value in the following

for testing the effectiveness of the estimated offloading param-

eters that depends on the FL and, in turns, on its iterations.

V. NUMERICAL RESULTS

Numerical results are obtained through computer simula-

tions with Matlab. A variable number of VUs between 100

and 1000 are considered, assuming that each one is generating

tasks with a probability equal to 0.2, while the remaining have

no task to be offloaded. VUs are uniformly distributed in a

two-lane road and travel in either directions with a velocity v̄m
equal to 10 m/s. Moreover, 80 RSUs are randomly placed on

either sides of the lanes. The task latency requirement (T̄xm
)

has been set to 2 s; this value is consistent with other works

in the literature [22], [37] considering similar scenarios and

applications. The other parameters considered in simulation

are listed in Table I.

The GA weight coefficients are Υ1,Υ3 = 10, Υ2 = 1, while

the crossover function parameter is Λ = 0.1, and the mutation

function parameters are µ = 0.02, σ = 0.1. Moreover, we set

an initial population of 30 chromosomes and Gmax=50, α0
m is

uniformly distributed between 0 and 1, while K is 2000, and

both |wi
m| and |wG| have size 1000 bits. The parameter γ is set

to 0.4 while estimating offloading parameters. In DBC policy

Π̂ is equal to Rr,n/2, while p = 0.5 is used in PC. Also, the

numerical value used for both η1 and η2 is 0.5. Finally, we

have considered θhu = 6 when evaluating the results for the

LS-HuA.

In the following, we present the results by comparing the

proposed GA approach with LS-HuA and two static bench-

marks:

• Computation Offloading without Performing any FL Iter-

ations (Without FL): In this approach, each VU decides

to offload data without performing any FL iteration.

Therefore, the offloading operation is performed with

α0
m without adding any FL cost. Since the initial value

of offloading parameter may or may not be optimal,

this approach cannot guaranty the optimal performance.

Though this approach can have a reduced cost, VU

100 200 300 400 500 600 700 800 900 1000

Total VUs

1

1.5

2

2.5

3

3.5

4

A
v
g

.
C

o
s
t

Without FL

Complete FL

LS-HuA

GA-FC

GA-DBC

GA-PC

GA-D

Fig. 7. Cost Function

performs the offloading operation without taking into

account the available time and energy resources which

may diminish performance in terms of constraint failures.

• Computation Offloading by Performing Complete FL It-

erations (Complete FL): In this particular method, each

VU performs the ρopt FL iterations before offloading data

towards RSU. Thus the offloading operation is performed

with αopt
m , as defined in (53), when βm is such that ρm =

ρopt. Though VUs can perform offloading with optimal

offloading parameters, it is not always feasible to perform

ρopt FL iterations with limited service time, sojourn time,

and energy of VU, which limits the performance of this

approach.

These two benchmarks do not consider the available resources

of VUs while making computation offloading decisions and

may have a sub-optimal performance over long-term simu-

lations. In the following figures, GA-FC, GA-DBC, GA-PC,

and GA-D are the acronyms used for the Genetic Algorithm

technique with FC, DBC, PC, and Distributed Clustering

approaches, respectively.

1) Avg. Latency and Energy Cost with Varying VUs: In

Fig. 7, the average cost in terms of joint latency and energy

consumed for both FL and task processing phases using a

variable number of VUs is shown. The results show that

GA and LS-HuA techniques have a considerable advantage

over the Complete FL approach with reduced cost values.

Even though the Without FL approach has the minimum

cost among all the proposed methods, it cannot guarantee

a reliable performance in terms of service latency, sojourn

time, and energy constraints, as shown and discussed later in

Figs. 8-10. The proposed Clustered GA approaches (i.e., GA-

FC, GA-DBC, GA-PC), thanks to a better knowledge of the

surrounding environment, performs FL and task processing

with a lower cost along with better reliability, which can ben-

efit several latency-critical services demanded by VUs having

limited energy resources. Since the required FL iterations to

achieve model convergence reduces with the participation of

more VUs, the cost of the Complete FL process decreases

with increasing VUs, but still it fails to achieve the overall

performance of proposed GA methods.

2) Performance in Terms of Sojourn Time Failures: Fig. 8

shows the percentage of number of VUs failing to perform

14

100 200 300 400 500 600 700 800 900 1000

Total VUs

0

10

20

30

40

50

60

S
o
jo

u
rn

 T
im

e
 F

a
ilu

re
s
(%

)

Without FL

Complete FL

LS-HuA

GA-FC

GA-DBC

GA-PC

GA-D

Fig. 8. Percentage of VUs with sojourn time constraint violation

the offloading operation before leaving the RSU coverage.

According to constraint (35), each VU should complete both

FL and task offloading processes within available sojourn

time. The two benchmark methods lack suitable flexibility

while performing the offloading operations as both methods

do not utilize the available latency resources properly while

performing the offloading operations. That results in higher

failures since they are not able to perform both FL and task

offloading operations in a limited sojourn time. It should be

noted that the complete FL approach has a falling curve, which

is due to the fact that by the increase in the number of VUs in

a service area, a shorter time will be required to achieve FL

convergence. On the other hand, both GA schemes and LS-

HuA approach perform an adequate number of FL iterations,

before performing the offloading operations, and, as a result,

have very few failures with reduced cost. The performance of

the Without FL worsens with an increasing number of VUs,

and at a certain point, it has even higher failures than the

Complete FL approach.

3) Performance in Terms of Service Time Outage: Fig. 9

shows the percentage of VUs failing to perform both FL

and the task processing operation within a demanded service

latency. The significant performance improvement in terms

of a reduced number of failures can be observed in the GA

and LS-HuA results, comparing with the benchmark methods.

This is mainly because of the improper allocation of VUs

available resources towards FL and task processing phases

in the benchmark methods. These results also highlight the

importance of proper allocation of VU resources for the FL

and task processing phases (estimation of B), for improving

the overall VNs performance.

4) Performance in Terms of Energy: Fig. 10 shows the per-

centage of VUs violating the energy constraint in (33). Since

each FL iteration costs energy, performing ρopt iterations for

each VU before offloading during the Complete FL approach

decreases its reliability in terms of respecting VUs energy

constraint and can be seen from these results. On the other

hand, GA and LS-HuA approaches have better performance

since they allocate a proper number of FL iterations before

offloading. Thus these results highlight the importance of

performing an adequate number of FL by taking into account

the VUs available resources to achieve a reliable performance

100 200 300 400 500 600 700 800 900 1000

Total VUs

0

10

20

30

40

50

60

70

80

90

100

S
e
rv

ic
e
 T

im
e
 F

a
ilu

re
s
(%

)

Without FL

Complete FL

LS-HuA

GA-FC

GA-DBC

GA-PC

GA-D

Fig. 9. Percentage of VUs with service time constraint violation

100 200 300 400 500 600 700 800 900 1000

Total VUs

0

10

20

30

40

50

60

70

80

90

100

E
n
e
rg

y
 F

a
ilu

re
s
(%

)

Without FL

Complete FL

LS-HuA

GA-FC

GA-DBC

GA-PC

GA-D

Fig. 10. Percentage of VUs violating the Energy Constraint in (33)

with FL in dynamic VNs.

5) Offloading Performance: Fig. 11 shows the average error

when estimating the offloading parameters. For a given set M
of VUs, the error in the estimation process is measured by

using the Root Mean Square Error (RMSE) as,

E(M,B∗) =

√

√

√

√

1

M

M
∑

i=1

∣

∣

∣

(

αopt
m (β∗

m)
)2 − (αm(β∗

m))
2
∣

∣

∣

where αopt
m (β∗

m) is the offloading parameter estimated in

(53), while αm(β∗
m) is derived through (38). The value E

decreases for the GA-FC approach with higher values of M ,

as the number of surrounding VUs increases. Other clustered

approaches have reduced offloading performance since only a

lower number of VUs participate in the optimization process

before performing offloading. Also, with limited available

information, the distributed approach fails to adapt itself

properly.

6) Impact of GA Iterations: In the case of GA, the perfor-

mance can be improved by increasing the number of iterations

of the GA. In Fig. 12, we compare the performance in terms

of average latency and energy cost by considering a different

number of GA iterations in the GA-FC policy. It can be seen

that as the number of iterations increases, GA performance

improves. However, after a certain number of iterations (i.e.,

50), performance of the GA process becomes stable, thus,

15

100 200 300 400 500 600 700 800 900 1000

Total VUs

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

GA-FC

GA-DBC

GA-PC

GA-D

Fig. 11. Avg. Offloading Error

100 200 300 400 500 600 700 800 900 1000

Total VUs

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

A
v
g
.
C

o
s
t

Fig. 12. GA Performance Vs Iterations

performing a higher number of iterations can only increase the

time complexity of the GA process by several folds, without

major gains in terms of offloading solution.

VI. CONCLUSION

In this work, we performed the optimization for a joint FL

and task processing problem over the integrated air-ground

network of HAP-assisted VN. For this, we first modeled the

computation offloading problem in the vehicular scenario in

which each VU can offload a portion of their tasks to the

surrounding RSUs. Next, an integrated air-ground network-

based FL platform was introduced, where powerful HAPs act

as an FL server to assist several VUs (i.e., FL clients) in

estimating the better offloading parameters. A joint compu-

tation offloading and FL process optimization problem aiming

at minimization of overall latency and energy cost was formu-

lated. The proposed solution methods include the RSU cluster-

based approach with several clustering policies and distributed

approaches. An evolutionary search-based GA was proposed to

find both allocated time for the two phases and estimating the

offloaded portions for the VUs. Simulation results demonstrate

that our proposed GA-based approaches, when compared with

other benchmark solutions, show a network-wide performance

improvement.

As future directions of this work, we point out the ex-

tension to autonomous driving scenarios, where VUs data

can be analyzed for solving vehicular problems through the

proposed FL platform. Some other challenges to be faced

include (i) a proper RSU selection for offloading, (ii) the

possibility of considering a network of multiple decentralized

HAPs for a higher fault-tolerance, (iii) the optimization of the

number of VUs participating in the FL process considering

their available resources, (iv) the extension to intermediate

FL layers (e.g., LAPs, UAVs, RSUs) for reducing the com-

munication/computation costs during FL data processing and

communication (i.e., Hierarchical FL).

REFERENCES

[1] N. Lyons and G. Lăzăroiu, “Addressing the COVID-19 crisis by harness-
ing internet of things sensors and machine learning algorithms in data-
driven smart sustainable cities,” Geopolitics, History, and International

Relations, vol. 12, no. 2, pp. 65–71, 2020.

[2] B. Ji, X. Zhang, S. Mumtaz, C. Han, C. Li, H. Wen, and D. Wang, “Sur-
vey on the Internet of Vehicles: Network architectures and applications,”
IEEE Comm. Stand. Mag., vol. 4, no. 1, pp. 34–41, Mar. 2020.

[3] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, “Joint load balancing and
offloading in vehicular edge computing and networks,” IEEE Internet

Things J., vol. 6, no. 3, pp. 4377–4387, Jun. 2018.

[4] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang, “Mobile-edge
computing for vehicular networks: A promising network paradigm with
predictive off-loading,” IEEE Veh. Technol. Mag., vol. 12, no. 2, pp.
36–44, Jun. 2017.

[5] A. Bozorgchenani, S. Maghsudi, D. Tarchi, and E. Hossain, “Computa-
tion offloading in heterogeneous vehicular edge networks: On-line and
off-policy bandit solutions,” IEEE Trans. Mobile Comput., 2021, Early
Access.

[6] A. Bozorgchenani, D. Tarchi, and G. E. Corazza, “Mobile edge comput-
ing partial offloading techniques for mobile urban scenarios,” in 2018

IEEE Global Communications Conference (GLOBECOM), Abu Dhabi,
UAE, Dec. 2018.

[7] F. Mashhadi, S. A. S. Monroy, A. Bozorgchenani, and D. Tarchi,
“Optimal auction for delay and energy constrained task offloading in
mobile edge computing,” Computer Networks, vol. 183, 2020, art. no.
107527.

[8] P. Liu, J. Li, and Z. Sun, “Matching-based task offloading for vehicular
edge computing,” IEEE Access, vol. 7, pp. 27 628–27 640, 2019.

[9] H. Ye, L. Liang, G. Y. Li, J. Kim, L. Lu, and M. Wu, “Machine learning
for vehicular networks: Recent advances and application examples,”
IEEE Veh. Technol. Mag., vol. 13, no. 2, pp. 94–101, Jun. 2018.

[10] D. Gündüz, P. de Kerret, N. D. Sidiropoulos, D. Gesbert, C. R. Murthy,
and M. van der Schaar, “Machine learning in the air,” IEEE J. Sel. Areas

Commun., vol. 37, no. 10, pp. 2184–2199, Oct. 2019.

[11] H. Fang, X. Wang, and S. Tomasin, “Machine learning for intelligent
authentication in 5G and beyond wireless networks,” IEEE Wireless

Commun., vol. 26, no. 5, pp. 55–61, Oct. 2019.

[12] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” in NIPS Workshop on Private Multi-Party Machine Learning,
2016.

[13] W. Gao, Z. Zhao, G. Min, Q. Ni, and Y. Jiang, “Resource allocation for
latency-aware federated learning in industrial internet of things,” IEEE

Trans. Ind. Informat., vol. 17, no. 12, pp. 8505–8513, Dec. 2021.

[14] J. Qiu, D. Grace, G. Ding, M. D. Zakaria, and Q. Wu, “Air-ground
heterogeneous networks for 5G and beyond via integrating high and
low altitude platforms,” IEEE Trans. Wireless Commun., vol. 26, no. 6,
pp. 140–148, Dec. 2019.

[15] X. Cao, P. Yang, M. Alzenad, X. Xi, D. Wu, and H. Yanikomeroglu,
“Airborne communication networks: A survey,” IEEE J. Sel. Areas

Commun., vol. 36, no. 9, pp. 1907–1926, Sep. 2018.

[16] Y. Shibata, N. Kanazawa, M. Konishi, K. Hoshino, Y. Ohta, and
A. Nagate, “System design of gigabit HAPS mobile communications,”
IEEE Access, vol. 8, pp. 157 995–158 007, 2020.

[17] G. K. Kurt, M. G. Khoshkholgh, S. Alfattani, A. Ibrahim, T. S. Darwish,
M. S. Alam, H. Yanikomeroglu, and A. Yongacoglu, “A vision and
framework for the high altitude platform station (HAPS) networks of
the future,” IEEE Commun. Surveys Tuts., vol. 23, no. 2, pp. 729–779,
2021.

16

[18] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1935–1949, Mar.
2021.

[19] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular
edge computing and networking: A survey,” Mobile Networks and

Applications, vol. 26, p. 1145–1168, 2021.

[20] R. A. Dziyauddin, D. Niyato, N. C. Luong, A. A. A. Mohd Atan, M. A.
Mohd Izhar, M. H. Azmi, and S. Mohd Daud, “Computation offloading
and content caching and delivery in vehicular edge network: A survey,”
2021, art. no. 108228.

[21] X. Li, Y. Dang, M. Aazam, X. Peng, T. Chen, and C. Chen, “Energy-
efficient computation offloading in vehicular edge cloud computing,”
IEEE Access, vol. 8, pp. 37 632–37 644, 2020.

[22] Z. Zhou, J. Feng, Z. Chang, and X. Shen, “Energy-efficient edge
computing service provisioning for vehicular networks: A consensus
ADMM approach,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 5087–
5099, May 2019.

[23] A. Bozorgchenani, F. Mashhadi, D. Tarchi, and S. Salinas, “Multi-
objective computation sharing in energy and delay constrained mobile
edge computing environments,” IEEE Trans. Mobile Comput., vol. 20,
no. 10, pp. 2992–3005, Oct. 2021.

[24] R. Yadav, W. Zhang, O. Kaiwartya, H. Song, and S. Yu, “Energy-
latency tradeoff for dynamic computation offloading in vehicular fog
computing,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 14 198–
14 211, Dec. 2020.

[25] Q. Ren, O. Abbasi, G. K. Kurt, H. Yanikomeroglu, and J. Chen,
“Caching and computation offloading in high altitude platform
station (HAPS) assisted intelligent transportation systems,” 2021,
arXiv:2106.14928.

[26] S. Yu, X. Gong, Q. Shi, X. Wang, and X. Chen, “EC-SAGINs: Edge
computing-enhanced space-air-ground integrated networks for internet
of vehicles,” IEEE Internet Things J., 2021, early access.

[27] C. Sun, W. Ni, and X. Wang, “Joint computation offloading and
trajectory planning for UAV-assisted edge computing,” IEEE Trans.

Wireless Commun., vol. 20, no. 8, pp. 5343–5358, Aug. 2021.

[28] J. Hu, C. Chen, L. Cai, M. R. Khosravi, Q. Pei, and S. Wan, “UAV-
assisted vehicular edge computing for the 6G internet of vehicles:
Architecture, intelligence, and challenges,” IEEE Comm. Stand. Mag.,
vol. 5, no. 2, pp. 12–18, 2021.

[29] A. M. Elbir, B. Soner, and S. Coleri, “Federated learning in vehicular
networks,” 2020, arXiv:2006.01412.

[30] Z. Yu, J. Hu, G. Min, Z. Zhao, W. Miao, and M. S. Hossain, “Mobility-
aware proactive edge caching for connected vehicles using federated
learning,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 5341–
5351, Aug. 2021.

[31] Z. Du, C. Wu, T. Yoshinaga, K.-L. A. Yau, Y. Ji, and J. Li, “Federated
learning for vehicular internet of things: Recent advances and open
issues,” IEEE Open J. Comp. Soc., vol. 1, pp. 45–61, 2020.

[32] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp.
269–283, Jan. 2021.

[33] S. Wang, M. Chen, C. Yin, W. Saad, C. S. Hong, S. Cui, and H. V.
Poor, “Federated learning for task and resource allocation in wireless
high altitude balloon networks,” IEEE Internet Things J., 2021, Early
Access.

[34] M. M. Amiri, D. Gündüz, S. R. Kulkarni, and H. V. Poor, “Update
aware device scheduling for federated learning at the wireless edge,” in
2020 IEEE International Symposium on Information Theory (ISIT), Los
Angeles, CA, USA, Jun. 2020, pp. 2598–2603.

[35] D. Ye, R. Yu, M. Pan, and Z. Han, “Federated learning in vehicular
edge computing: A selective model aggregation approach,” IEEE Access,
vol. 8, pp. 23 920–23 935, 2020.

[36] W. Bao, C. Wu, S. Guleng, J. Zhang, K.-L. A. Yau, and Y. Ji,
“Edge computing-based joint client selection and networking scheme
for federated learning in vehicular IoT,” China Communications, vol. 18,
no. 6, pp. 39–52, Jun. 2021.

[37] S. Li, S. Lin, L. Cai, W. Li, and G. Zhu, “Joint resource allocation and
computation offloading with time-varying fading channel in vehicular
edge computing,” IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 3384–
3398, Mar. 2020.

[38] M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and
H. V. Poor, “Distributed learning in wireless networks: Recent progress
and future challenges,” 2021, arXiv:2104.02151.

[39] M. Isaksson and K. Norrman, “Secure federated learning in 5G mobile
networks,” in GLOBECOM 2020 - 2020 IEEE Global Communications

Conference, Taipei, Taiwan, Dec. 2020.
[40] C. T. Dinh, N. H. Tran, M. N. H. Nguyen, C. S. Hong, W. Bao, A. Y.

Zomaya, and V. Gramoli, “Federated learning over wireless networks:
Convergence analysis and resource allocation,” IEEE/ACM Trans. Netw.,
vol. 29, no. 1, pp. 398–409, Feb. 2021.

[41] H. Wu and P. Wang, “Fast-convergent federated learning with adaptive
weighting,” IEEE Trans. on Cogn. Commun. Netw., 2021, Early Access.

[42] X. Mo and J. Xu, “Energy-efficient federated edge learning with joint
communication and computation design,” Journal of Communications

and Information Networks, vol. 6, no. 2, pp. 110–124, Jun. 2021.
[43] N. Sagias, G. Tombras, and G. Karagiannidis, “New results for the shan-

non channel capacity in generalized fading channels,” IEEE Commun.

Lett., vol. 9, no. 2, pp. 97–99, Feb. 2005.
[44] A. E. Eiben and J. E. Smith, Introduction to evolutionary computing,

2nd ed. Berlin, Heidelberg: Springer, 2015.

Swapnil Sadashiv Shinde (Student Member, IEEE)
is a Ph.D. student at the University of Bologna, Italy.
He received the the MS degree in Telecommunica-
tion Engineering from the University of Bologna,
Italy, in 2020. From 2015 to 2017, he worked as
a Project Engineer in the Indian Institute of Tech-
nology, Kanpur, India. His main focus is on the
Connected Vehicles for Beyond 5G Scenarios.

Arash Bozorgchenani (Member, IEEE) Has been a
Research Associate at Lancaster University, the UK
since 2020. During 2016-2020 he obtained his Ph.D.
degree in Telecommunications and IT at University
of Bologna, Italy, where he spent one year as a post-
doctoral researcher. He has been involved in both
national Gaucho (PRIN 2015, Italy) and European
(H2020 SANCUS) projects. His research interests
include resource allocation, machine learning and
optimization techniques in wireless communications.

Daniele Tarchi (Senior Member, IEEE) is an Asso-
ciate Professor at the University of Bologna, Italy.
He holds a Ph.D. degree in Informatics and Telecom-
munications Engineering from the University of Flo-
rence, Florence, Italy, in 2004. He is the author of
more than 130 published articles in international
journals and conference proceedings. His research
interests are mainly on Wireless Communications
and Networks, Satellite Communications and Net-
works, Edge Computing, Fog Computing, Smart
Cities, and Optimization Techniques. Prof. Tarchi is

an IEEE Senior Member since 2012.

Qiang Ni (Senior Member, IEEE) is a Professor at
the School of Computing and Communications, Lan-
caster University, U.K. His research areas include
future generation communications and network-
ing, including green communications/networking,
millimeter-wave wireless, cognitive radio systems,
5G/6G, SDN, cloud networks, edge computing,
dispersed computing, IoT, cyber physical systems,
AI/machine learning and vehicular networks. He has
authored or co-authored 300+ papers in these areas.
He was an IEEE 802.11 Wireless Standard Working

Group Voting Member and a contributor to various IEEE wireless standards.

