
This is a repository copy of Refinement and validation of the minimal information data-
modelling (MID) method for bridge management.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/214792/

Version: Published Version

Article:

O’Higgins, C. orcid.org/0000-0001-7034-005X, Hester, D., McGetrick, P. et al. (2 more 
authors) (2024) Refinement and validation of the minimal information data-modelling (MID)
method for bridge management. Sensors, 24 (12). 3879. ISSN 1424-8220 

https://doi.org/10.3390/s24123879

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Citation: O’Higgins, C.; Hester, D.;

McGetrick, P.; Ao, W.K.; Cross, E.J.

Refinement and Validation of the

Minimal Information Data-Modelling

(MID) Method for Bridge

Management. Sensors 2024, 24, 3879.

https://doi.org/10.3390/s24123879

Academic Editors: Jose Alfonso

Antonino-Daviu, Francesc Pozo,

Steven Chatterton and Mohammad

N Noori

Received: 20 May 2024

Revised: 6 June 2024

Accepted: 10 June 2024

Published: 15 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Refinement and Validation of the Minimal Information
Data-Modelling (MID) Method for Bridge Management

Connor O’Higgins 1 , David Hester 1,*, Patrick McGetrick 2, Wai Kei Ao 3 and Elizabeth J. Cross 4

1 School of Natural and Built Environment, Queen’s University Belfast, University Rd., Belfast BT7 1NN, UK;

c.ohiggins@qub.ac.uk
2 School of Engineering, National University of Ireland Galway, University Rd., H91 TK33 Galway, Ireland;

patrick.mcgetrick@universityofgalway.ie
3 Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong;

waikei.ao@polyu.edu.hk
4 Department of Mechanical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK;

e.j.cross@sheffield.ac.uk

* Correspondence: d.hester@qub.ac.uk

Abstract: Various approaches have been proposed for bridge structural health monitoring. One of

the earliest approaches proposed was tracking a bridge’s natural frequency over time to look for

abnormal shifts in frequency that might indicate a change in stiffness. However, bridge frequencies

change naturally as the structure’s temperature changes. Data models can be used to overcome this

problem by predicting normal changes to a structure’s natural frequency and comparing it to the

historical normal behaviour of the bridge and, therefore, identifying abnormal behaviour. Most of

the proposed data modelling work has been from long-span bridges where you generally have large

datasets to work with. A more limited body of research has been conducted where there is a sparse

amount of data, but even this has only been demonstrated on single bridges. Therefore, the novelty

of this work is that it expands on previous work using sparse instrumentation across a network of

bridges. The data collected from four in-operation bridges were used to validate data models and

test the capabilities of the data models across a range of bridge types/sizes. The MID approach was

found to be able to detect an average frequency shift of 0.021 Hz across all of the data models. The

significance of this demonstration across different bridge types is the practical utility of these data

models to be used across entire bridge networks, enabling accurate and informed decision making in

bridge maintenance and management.

Keywords: Structural Health Monitoring; data modelling; environmental effects; low cost; long-term

bridge monitoring; regression

1. Introduction

Bridges are critical components of transportation infrastructure and require a signif-
icant number of inspections and maintenance activities. Structural Health Monitoring
(SHM) is one method that has been explored in recent times to aid the decision making
undertaken by bridge managers. However, the widespread adoption of SHM for use in
bridge management has not occurred. One reason for this is the need for a large number of
sensors, which increases the costs associated with SHM systems.

In the field of bridge SHM, vibration-based monitoring is commonplace, and most
of these studies have been conducted on long-span bridges. Many studies have been
carried out on bridges that are over 150 m long [1–7], and a large number of sensors are
typically installed for the Structural Health Monitoring of civil structures. For instance,
Ref. [3] installed 232 sensors on a 1.1 km bridge, Ref. [4] installed more than 600 sensors
on a tower, and [5] installed 114 sensors on a 168 m bridge. Although there have been
some monitoring efforts on short- and medium-span bridges [8–11], they still follow the
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convention of installing a large number of sensors, with the sensors in these studies ranging
from 40 to over 200. However, it is impractical to use large numbers of sensors across
an entire bridge network due to logistical and financial limitations. Some studies have
investigated the use of minimal, low-cost sensors for SHM, but these studies are often
restricted to laboratory settings [12] or carried out on a short-term basis (e.g., 30 min [13] or
30 days [14]).

While existing methods of vibration-based bridge SHM may offer insights into bridge
health, they often rely on resource-intensive data collection processes, as shown above. This
approach may not be practical for many bridges, particularly the most common highway
bridges. Moreover, the scarcity of long-term frequency data for short- and medium-span
bridges poses challenges in validating SHM methods.

The majority of bridges in use today are short- and medium-span bridges. If SHM
technology were widely adopted for these bridge types, the benefits could be significant.
For SHM to be suitable for use across a range of short- and medium-span bridges, it will
likely need to have the following properties:

1. Low cost: The cost of the system should be low so that it is feasible to install the
system across a network of similar bridges, such as typical highway bridges.

2. Easy to install: The installation process should be straightforward enough so that it
can be carried out by existing staff and minimise costly infrastructure disruptions.

3. Can provide useful information: The system should be able to determine when a
bridge is behaving differently from the expected or previously measured behaviour.

To achieve these characteristics, the authors in [15] proposed to use a single MEMS ac-
celerometer in conjunction with a sparse data modelling approach. The study demonstrated
the concept on a single-span half-through girder bridge with data spanning approximately
two years and identified that they could potentially identify a local stiffness loss of 23.6%
and global damages of 1.7%. While the work of [15] was useful in demonstrating the
concept, it is unknown if local and global stiffness loss detection capability were specific
to the studied bridge or if the method would remain performant across a range of bridge
types. Furthermore, Ref. [15] provides no information on whether the MID process is
scalable. Specifically, if the user wished to apply to bridges on a network, a number of
important questions arise that were not examined in [15]. For example, how repeatable and
automated the method could be when monitoring different bridges.

This paper’s specific contributions can be summarised in 1 and 2 below.

1. Utilising data from four bridges to validate and refine the accuracy and reliability of
MID data models for a range of different bridge types.

2. Developing tools and processes to ensure that MID is scalable when applied to
multiple bridges.

The refinement process (contribution 1) aims to improve the accuracy of predictions
regarding bridges’ dynamic behaviour while maintaining the method’s efficiency and
practicality. With this increased accuracy, it is hoped that a smaller abnormal change in the
natural frequencies of the bridges may be detected. After refining and validating the MID
process, a standardised method was developed to test each MID data model to identify the
detectable level of natural frequency shift.

The results of this study showed a high level of accuracy in predicting the bridges’
future dynamic behaviour. The average detectable frequency shift of all 15 data models
was 0.021 Hz. This accuracy was achieved using an easy-to-use monitoring system costing
only GBP 300.

2. Concept Overview

The goal of the MID methodology is to track and detect abnormal changes in a given
natural frequency of a bridge. Using the data model to predict future behaviour current
measurements of natural frequency can be compared to the predicted natural frequencies
to allow any anomalous change in frequency to be identified. Damage to the bridge will
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cause a change in the natural frequency, and the smaller the frequency shift that can be
detected, the more sensitive to changing natural frequency the data model will be.

A schematic of this concept is shown in Figure 1. Figure 1a shows the results of a
theoretical data model. The blue line shows the actual natural frequency of the structure,
which we can measure with instrumentation. The orange dots show the predicted natural
frequency resulting from our trained data model. The black vertical line in Figure 1a–d
denotes where the data were split so that data to the left of this line can be used to train the
model, and data to the right denotes the data that are being monitored to detect abnormal
changes in the frequency. In Figure 1a, there is no anomalous behaviour, so the blue line
and orange dots perfectly align. This can be seen more clearly in Figure 1b, which shows
the residuals (purple dots) of the data model, which are the predicted frequencies minus
the measured frequencies. As the data model perfectly predicts the natural frequencies,
the residuals of the data model are zero. Figure 1c,d show what happens when the
natural frequency changes abnormally during the monitoring period. In the data model
results shown in Figure 1c, it can be seen that the measured frequencies and the predicted
frequencies diverge during the monitoring period; however, it is clearer in the residual
plot shown in Figure 1d, with the point of abnormal behaviour being evident where the
residual jumps up. This is the concept that will be utilised in this paper to detect abnormal
behaviour in the monitored structures.
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Figure 1. Concept schematic. Data model (a) with no abnormal behaviour. (b) residuals with no

abnormal behaviour. (c) with abnormal behaviour. (d) residuals with abnormal behaviour.

MID employs various data modelling techniques suitable for the kind of bridge data
obtained from the sparse sensor arrangement envisaged by the MID approach. The data
models developed by MID take various measured predictors, generally environmental
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variables, and determine the relationship between these variables and the natural frequency
of the bridge. When this relationship is determined, we can use the predictors to predict
future natural trends and then compare them to the measured natural frequencies from the
SHM system in the way described in the concept above.

3. Data Collection

3.1. Bridge Descriptions

This section will briefly describe the UK bridges used in this study. To examine the
robustness of the proposed MID approach when choosing the bridges for this study, a
mixture of different span lengths, span numbers, and construction types was desired. The
four bridges chosen have span lengths ranging from 8.9 to 98 m with span numbers ranging
from 1 to 3. This represents a good sample of the common span lengths encountered on
short- and medium-span bridges. The construction type/material of these bridges also var-
ied as the sample includes a steel bridge, reinforced concrete bridges, and a steel–concrete
composite bridge. One bridge, a 98 m steel tied-arch structure, was chosen so that a bridge
toward the upper end of the short and medium bridge span range was included.

3.1.1. Bridge 1

Bridge 1 is a steel tied-arch bridge that spans 98 m and is 27.7 m wide. Each of the
main arches supports 22 tie-rod hangers with a diameter of 90 mm. These hangers support
the main deck structure. The main longitudinal beams are a mix of welded plate girders (in
the centre) and box sections (at the springings) with a depth of approximately 1650 mm.
The 275 mm deep concrete deck acts compositely with the transverse crossbeams, which are
supported by the main longitudinal beams. The steel bridge structure is supported by two
concrete abutments. Figure 2a shows a drawing of the bridge’s elevation, and Figure 2b
shows an icon that will be used to represent Bridge 1 in this paper. The bridge icons (one
for each of the bridges), along with their colours, will be used as a convention for this paper
so that when data are presented in later sections, it is easy for the reader to identify which
bridge the data are from. Similarly, the colour used for plots of data from a given bridge
will be consistent with the colour of the icon, making it easier to compare each bridge.
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3.1.2. Bridge 2

Bridge 2 is a three-span composite concrete and steel bridge. The bridge consists
of two larger spans of 33.5 m and one smaller end span of 8.9 m. The smaller span is
constructed from pre-stressed inverted T beams, which are topped by a reinforced concrete
deck. The two larger spans are constructed by encasing seven preloaded steel beams in
concrete (preflex method) to form the deck structure. The preflexed beams have a depth
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of 920 mm. Due to the length of the preflexed beams, they were spliced together during
construction with high-strength, friction grip bolts. The deck elements are supported on
two reinforced concrete piers supported by bored piles. Figure 3a shows a drawing of the
bridge elevation, and Figure 3b shows an icon that will be used to represent Bridge 2 in
this paper.
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drop-in centre span via a cantilever slab section. The drop-in span is constructed from 
precast, pre-stressed inverted T beams with in situ concrete placed over and between the 
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Bridge 3 consists of a single 32 m span. The bridge supports a dual carriageway
(two lanes, unidirectional) and a footpath. The bridge is constructed from 13 concrete
Y beams supporting a reinforced concrete deck. Adjoining the bridge, and supporting
an adjacent dual carriageway, is an older masonry arch bridge. These two bridges are
constructed with no apparent gap between them, so the extent to which one side of the
deck of the concrete bridge is restrained is unknown. Figure 4a shows a drawing of the
bridge elevation, and Figure 4b shows an icon that will be used to represent Bridge 3 in
this paper.
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3.1.4. Bridge 4

Bridge 4 consists of two side spans (11 m) and a central suspended span (17 m). The
side spans are constructed from reinforced concrete slabs. These side spans support the
drop-in centre span via a cantilever slab section. The drop-in span is constructed from
precast, pre-stressed inverted T beams with in situ concrete placed over and between the
beams to form a solid composite deck slab. Figure 5a shows a drawing of the bridge
elevation, and Figure 5b shows an icon that will be used to represent Bridge 4 in this paper.
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accelerometers used to collect the data during the modal test were high-performance, 
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Hz). The accelerometers’ signals were carried to the data logger, which was located away 
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during the modal test.
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As only seven wired accelerometers were available during the modal tests and up to
seventeen locations required monitoring (depending on the bridge), the data were collected
in a number of stages/‘swipes’. One swipe consisted of placing all seven accelerometers
and collecting data for approximately 45 min. After a swipe is complete, six of the ac-
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celerometers are moved, leaving one accelerometer in place as a reference, and another
45 min of data are collected. This swipe process was repeated until all the required locations
had been monitored.

The same philosophy was adopted on Bridge 1 but due to logistical issues with
access, the approach was amended to include some standalone accelerometers, which were
synchronised manually. This process was described in greater detail in [16].

For the four bridges, the modal identification technique used was stochastic subspace
identification (SSI). The data from the different swipes were combined by normalising the
data for each swipe using the data from the reference accelerometer, which remained in the
same location for the duration of each test.

The mode shapes and their associated natural frequencies can be seen in Table 1.
Each column in the table represents one of the four studied bridges, and each row shows
sequential modes. The natural frequency and damping ratio of each of the models are
also stated.

Table 1. Modal analysis results for all bridges in this study.

Bridge 1 Bridge 2 Bridge 3 Bridge 4
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lected in a number of stages/‘swipes’. One swipe consisted of placing all seven accelerom-
eters and collecting data for approximately 45 min. After a swipe is complete, six of the 
accelerometers are moved, leaving one accelerometer in place as a reference, and another 
45 min of data are collected. This swipe process was repeated until all the required loca-
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3.3. Description of the Long-Term SHM System

As a single accelerometer was used to collect the long-term vibration data, its position
was an important consideration, as shown in [17]. Other studies, such as [18], use numerical
simulations to optimise the position of the sensors. In this work, the position of this sensor
was designed to be installed at a location with some modal amplitude for all the modes. As
MID tracks the natural frequencies of the structure to identify changes in behaviour, any
modes that cannot be tracked due to the placement of the sensor may mean that certain
damage cases may not be detected. Ideally, the sensor should be placed close to the point
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of maximum modal amplitude. However, for a given bridge, it is unusual for this point
to be the same for all modes. So, for example, for Bridge 2, the midspan of span 1 would
be a very suitable location to place the sensor to capture information on modes 1–4, as
the midspan happens to be the anti-node for these modes. However, the midspan would
be a very poor location to capture information on mode 5, as the midspan happens to be
the node point for mode 5. In most cases, this results in a trade-off, and it was found that
positioning the sensor close to the quarter-span point on all four bridges allowed the sensor
to detect the most modes/frequencies.

The SHM system was designed to be as general and as easy to install as possible.
As such, the accelerometer can be installed on the surface of the bridge deck, with the
variations in the bridge types being accounted for in optimising the placement of the
accelerometer, which was discussed above. The MID method then takes further steps to
account for variation in the bridges, such as selecting the best predictors (discussed in
Section 5) for the data models and testing different outlier detection methods.

The SHM system used to obtain the long-term monitoring data consisted of one
MEMS accelerometer and one environmental sensor. The accelerometer used was the
‘Multifunction Extended Life (MEL) Data Logger’ from Gulf Coast Data Concepts. This
accelerometer measures acceleration in three axes within a range of ±2 g and has a real-time
clock to timestamp every acceleration measurement. The acceleration data from the sensor
are stored locally on an SD card at a sampling rate of 128 Hz, and the sensor is powered by
an internal battery. The MEL accelerometer was housed in an enclosure that was in turn
attached to the deck of each of the bridges. One of the enclosures can be seen in Figure 7.
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The environmental variables were measured with an environmental sensor. This sin-
gle sensor was capable of measuring both air temperature and humidity. The sensors were 
not placed within the enclosure to avoid inaccurate temperature measurements due to 
solar gain. Instead, the temperature and humidity sensors were placed out of direct sun-
light, giving a representative value of local air temperature. The location of the tempera-
ture sensors varied on each of the four bridges. However, they were typically placed on 
the abutment shelf or at the base of an abutment out of direct sunlight.

Figure 7. Monitoring enclosure with the MEL accelerometer.

The environmental variables were measured with an environmental sensor. This single
sensor was capable of measuring both air temperature and humidity. The sensors were not
placed within the enclosure to avoid inaccurate temperature measurements due to solar
gain. Instead, the temperature and humidity sensors were placed out of direct sunlight,
giving a representative value of local air temperature. The location of the temperature
sensors varied on each of the four bridges. However, they were typically placed on the
abutment shelf or at the base of an abutment out of direct sunlight.
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4. Review of Collected Data

This section presents an overview of the acceleration and temperature data collected
from all four bridges before undertaking the data-modelling process. This review ensures
that the data are credible so that they can be used in the data modelling process.

4.1. Acceleration Data

Typical acceleration data from the four monitored bridges are shown in Figure 8.
Figure 8a shows acceleration data over 24 h for Bridge 1. Figure 8b shows the acceleration
signal for a single-vehicle event that occurred during the 24 h (indicated by a red line
in Figure 8a). Figure 8c,e,g show the acceleration signal collected from Bridges 2, 3, and
4, respectively, over the same 24 h period (as shown in Figure 8a). Figure 8d,f,h show a
single-vehicle event within the 24 h from Bridges 2, 3, and 4, respectively (location marked
with a red line in the corresponding 24 h plot).

 

Figure 8. Typical example of acceleration data. (a) Bridge 1: 24 h. (b) Bridge 1: single loading event. 
(c) Bridge 2: 24 h. (d) Bridge 2: single loading event. (e) Bridge 3: 24 h. (f) Bridge 3: single loading 
event. (g) Bridge 4: 24 h. (h) Bridge 4: single loading event.

4.2. Temperature Data
To ensure that the collected temperature data were sensible/credible, they were com-

pared to data from a nearby weather station. This validation of the air temperature data 
is an important step, as the temperature data will be used as the main predictor in each of 
the data models used to predict the natural frequencies of the bridges. Figure 9 shows 
seven days of temperature data, with the blue, orange, purple, and green lines represent-
ing Bridges 1, 2, 3, and 4, respectively. Temperature data between each of the bridges are 
fairly consistent, albeit with slight differences, depending on the location of the bridge. 
The corresponding air temperature from the weather station is also plotted (red star mark-
ers). This met office weather station ranges from 11 to 14.5 miles from the four monitored 
bridges. The broad temperature trends at all four of the bridges match well with the met 
office air temperature. There are some small differences, e.g., for the hottest and the cold-
est temperatures, the met office temperature tends to be fractionally higher/lower, but this 
is likely due to the met office temperature being taken in a weather station, whereas the 
temperature at the bridges is taken close to a structure, which could account for the slight 
differences. Overall, the data presented in Figure 9 suggest that the air temperature read-
ings collected from the long-term monitoring system are credible.

Figure 8. Typical example of acceleration data. (a) Bridge 1: 24 h. (b) Bridge 1: single loading event.

(c) Bridge 2: 24 h. (d) Bridge 2: single loading event. (e) Bridge 3: 24 h. (f) Bridge 3: single loading

event. (g) Bridge 4: 24 h. (h) Bridge 4: single loading event.

In the 24 h plots (Figure 8a,c,e,g), all four bridges show the same pattern. Most activity
occurs between 06:00 and 21:00, with less activity during the night. This pattern is expected
with the higher traffic generally occurring in the daytime. By looking at the y-axis limits,
it is evident that the range of acceleration for Bridges 1, 3, and 4 is approximately similar,
with accelerations typically in the range of 1.05 g to 0.95 g. This is due to the standard
deviation of the 24 h acceleration signals being similar for Bridges 1, 3, and 4 (0.0014 g,
0.0014 g, and 0.0011 g). The range of acceleration experienced by Bridge 2 is slightly higher,
with accelerations typically in the range of 0.9–1.1 g and a standard deviation of the 24 h
acceleration signal of 0.0027 g. The higher standard deviation would suggest that Bridge 2
experiences a slightly higher magnitude of acceleration.

The single-vehicle events (Figure 8b,d,f,h) all show a characteristic free decay and
look credible, with the duration of the free decay periods being approximately similar. The
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free decay periods being of a comparable duration is consistent with the similar levels of
damping observed in the modal analysis (Table 1).

4.2. Temperature Data

To ensure that the collected temperature data were sensible/credible, they were
compared to data from a nearby weather station. This validation of the air temperature
data is an important step, as the temperature data will be used as the main predictor in
each of the data models used to predict the natural frequencies of the bridges. Figure 9
shows seven days of temperature data, with the blue, orange, purple, and green lines
representing Bridges 1, 2, 3, and 4, respectively. Temperature data between each of the
bridges are fairly consistent, albeit with slight differences, depending on the location of the
bridge. The corresponding air temperature from the weather station is also plotted (red
star markers). This met office weather station ranges from 11 to 14.5 miles from the four
monitored bridges. The broad temperature trends at all four of the bridges match well with
the met office air temperature. There are some small differences, e.g., for the hottest and the
coldest temperatures, the met office temperature tends to be fractionally higher/lower, but
this is likely due to the met office temperature being taken in a weather station, whereas
the temperature at the bridges is taken close to a structure, which could account for the
slight differences. Overall, the data presented in Figure 9 suggest that the air temperature
readings collected from the long-term monitoring system are credible.

 

Figure 9. Temperature data over 7 days from each of the monitored bridges and met office data for 
the same period.

4.3. Frequency Data
4.3.1. Time Series Frequency Data

The first step in the frequency extraction process was to split the collected accelera-
tion data into 30 min sections. A stochastic subspace identification (SSI) method was used 
to convert time-series data to frequency data. A unique set of SSI inputs for each identified 
mode was determined using the method outlined in [19].

The data were recorded between October 2018 and May 2021. However, there were 
some breaks in the data due to the availability of personnel for data collection and the 
COVID-19 pandemic. An example of the natural frequency datasets for Bridges 1–4 is pre-
sented in Figure 10. Figure 10 presents the four highest natural frequencies, one for each 
of the monitored bridges. The highest natural frequency was chosen, as they typically 
show the highest variation with time/temperature. Figure 10a shows the mode 5 fre-
quency data over the entire 30-month monitoring period for Bridge 1. The frequency data 
are shown with the blue dots and, for convenience, the colder/winter months (September–
February) are shaded in green, and the warmer/summer months (March–August) are 
shaded in red. There are occasional gaps in the data due to delays in collecting the data or 
changing the batteries. The most significant gaps occur in Q2 and Q3 2020, resulting from 
restrictions on travel/site work due to COVID-19. Figure 10b shows the same mode 5 fre-
quency data over seven days and the corresponding temperature data, with frequency 
and temperature being plotted against the left and right y-axes, respectively. The seven-

Figure 9. Temperature data over 7 days from each of the monitored bridges and met office data for

the same period.
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4.3. Frequency Data

4.3.1. Time Series Frequency Data

The first step in the frequency extraction process was to split the collected acceleration
data into 30 min sections. A stochastic subspace identification (SSI) method was used to
convert time-series data to frequency data. A unique set of SSI inputs for each identified
mode was determined using the method outlined in [19].

The data were recorded between October 2018 and May 2021. However, there were
some breaks in the data due to the availability of personnel for data collection and the
COVID-19 pandemic. An example of the natural frequency datasets for Bridges 1–4 is
presented in Figure 10. Figure 10 presents the four highest natural frequencies, one for each
of the monitored bridges. The highest natural frequency was chosen, as they typically show
the highest variation with time/temperature. Figure 10a shows the mode 5 frequency data
over the entire 30-month monitoring period for Bridge 1. The frequency data are shown
with the blue dots and, for convenience, the colder/winter months (September–February)
are shaded in green, and the warmer/summer months (March–August) are shaded in red.
There are occasional gaps in the data due to delays in collecting the data or changing the
batteries. The most significant gaps occur in Q2 and Q3 2020, resulting from restrictions on
travel/site work due to COVID-19. Figure 10b shows the same mode 5 frequency data over
seven days and the corresponding temperature data, with frequency and temperature being
plotted against the left and right y-axes, respectively. The seven-day period is indicated by
the two red lines in Figure 10a. Figure 10c shows one day of frequency and temperature
data, and this interval is shown in Figure 10b with the two red lines. The resolution of the
frequency data are generally two readings per hour, and Figure 10c shows how this fine
resolution of the data can be used to observe changes over short periods of time, e.g., a few
hours. The same format is used to present the data for the remaining three bridges. The data
from the highest mode for Bridges 2, 3, and 4 are presented in Figure 10d–f, g–i, and j–l,
respectively.

4.3.2. Relative Variation

While the behaviour of a given modal frequency with respect to temperature can be
appreciated by looking at the time series plots such as Figure 10, further useful insight
can be obtained by looking at some statistical metrics. For example, the relative variation
of each of the natural frequencies gives an appreciation of how much normal variation
occurs due to operational and environmental effects. This metric has been used in previous
studies, such as [20]. The relative variation is defined using Equation (1).

RVi =
fmax − fmin

fmean
× 100% (1)

where fmax, fmin, and fmean are the maximum, minimum, and mean of the extracted natural
frequency dataset. Table 2 shows the relative variation for all the identified modes. The
relative variation ranges from 4.87% of the second mode of Bridge 2 to 16.41% of the first
mode of bridge 1. To allow the levels of variation to be more easily visualised, the variation
percentages are colour coded in the table (blue 17–13%, green 13–9%, red 9–4%). This level
of variation is consistent with the levels reported in previous studies. Ref. [6] studied 12
modes associated with a footbridge and found that the relative variation ranged from 14
to 20.6%. Ref. [21] found the relative variation of a stress ribbon footbridge’s frequencies
was between 15.3% and 21.4%. Ref. [3] observed that the normal environmental change
accounts for the variation in extracted frequencies of 0.962–6.690% for the first eight modes
for a multi-span cable-stayed footbridge bridge. While the studies quoted above do not
study highway bridges, the range of relative variation from other short-span bridges is
consistent with the findings here.
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day period is indicated by the two red lines in Figure 10a. Figure 10c shows one day of 
frequency and temperature data, and this interval is shown in Figure 10b with the two red 
lines. The resolution of the frequency data are generally two readings per hour, and Figure 
10c shows how this fine resolution of the data can be used to observe changes over short 
periods of time, e.g., a few hours. The same format is used to present the data for the 
remaining three bridges. The data from the highest mode for Bridges 2, 3, and 4 are pre-
sented in Figure 10d–f, g–i, and j–l, respectively.

 

Figure 10. Example of natural frequency data from four bridges. (a,d,g,j) Natural frequency over

30 months; the summer and winter are indicated. (b,e,h,k) Natural frequency over 7 days and

corresponding temperature. (c,f,i,l) Natural frequency over 1 day and corresponding temperature.
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Table 2. Statistics of the identified natural frequencies. (blue 17–13%, green 13–9%, red 9–4%).

Bridge Reference Bridge 1 Bridge 2 Bridge 3 Bridge 4

Bridge Icon

Figure 10. Example of natural frequency data from four bridges. (a,d,g,j) Natural frequency over 30 
months; the summer and winter are indicated. (b,e,h,k) Natural frequency over 7 days and corre-
sponding temperature. (c,f,i,l) Natural frequency over 1 day and corresponding temperature.
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The relative variation ranges from 4.87% of the second mode of Bridge 2 to 16.41% of the 
first mode of bridge 1. To allow the levels of variation to be more easily visualised, the 
variation percentages are colour coded in the table (blue 17–13%, green 13–9%, red 9–4%). 
This level of variation is consistent with the levels reported in previous studies. Ref. [6] 
studied 12 modes associated with a footbridge and found that the relative variation 
ranged from 14 to 20.6%. Ref. [21] found the relative variation of a stress ribbon foot-
bridge’s frequencies was between 15.3% and 21.4%. Ref. [3] observed that the normal en-
vironmental change accounts for the variation in extracted frequencies of 0.962–6.690% 
for the first eight modes for a multi-span cable-stayed footbridge bridge. While the studies 
quoted above do not study highway bridges, the range of relative variation from other 
short-span bridges is consistent with the findings here.
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Mode 1
Average Frequency (Hz) 0.95 2.58 4.44 5.67

Relative Variation (%) 16.41 14.64 7.65 12.24

Mode 2
Average Frequency (Hz) 1.62 3.71 7.35 7.81

Relative Variation (%) 8.55 4.87 13.17 16.37

Mode 3
Average Frequency (Hz) 1.76 4.05 9.99

Relative Variation (%) 5.45 9.47 16.22

Mode 4
Average Frequency (Hz) 2.76 4.86

Relative Variation (%) 8.63 5.44

Mode 5
Average Frequency (Hz) 5.19 9.33

Relative Variation (%) 7.21 5.13

4.3.3. Relationships between Variables
Before creating the data models, it is important to identify the approximate relation-

ships between the natural frequency data and environmental data. Identification of the 
specific relationships will inform what type of regression will most accurately model the 
collected data. For example, if the relationships were non-linear, using a linear regression 
would not accurately model the data. Figure 11 shows the air temperature (x-axis) and 
corresponding natural frequency (y-axis) plotted for each of the identified modes.

For Bridges 1, 3, and 4, the majority of the plots in Figure 11 show frequency and 
temperature having an inverse relationship, as expected. To highlight this fact, the best 
linear fit line is shown for each plot. It can be seen that most have a downward slope, 
indicating an inverse correlation. The first mode for Bridge 3 shows a slight positive 
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atures above 13 °C and create two separate data models. The second was to create a data 
model with all of the data and combine this with a GPR regression, possibly resulting in 
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13 °C (approximately 20%) was insufficient to provide accurate results. Therefore, the data 
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For Bridges 1, 3, and 4, the majority of the plots in Figure 11 show frequency and
temperature having an inverse relationship, as expected. To highlight this fact, the best
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linear fit line is shown for each plot. It can be seen that most have a downward slope,
indicating an inverse correlation. The first mode for Bridge 3 shows a slight positive
correlation; however, the magnitude of the positive slope is quite small. In some modes, sub-
zero temperatures cause a weak bilinear relationship between frequency and temperature.
The mode where this is most obvious is mode 2 for Bridge 3; this is highlighted by the
green dashed box in the top left of Figure 11i. This kind of bilinear behaviour around 0 ◦C
is similar to that observed on the Z24 bridge [10] due to freezing events and is felt to be
related to the effective stiffening of the deck when water in the deck/surfacing freezes.

The plots for all modes of Bridge 2 (orange) are noticeably different from the other
bridges, as they display a distinct bilinear relationship between frequency and temperature,
with the pivot point being approximately 13 ◦C. Due to the limited number of studies
that have carried out long-term monitoring on short- to medium-span bridges, there are
very few examples of bilinear behaviour, such as that being exhibited by Bridge 2 at
13 ◦C. The closest example is the bilinear behaviour of the Z24 bridge [10] due to the
freezing events mentioned earlier. However, no one has reported bilinear behaviour of
short/medium-span highway bridges not related to freezing. Considering the very small
sample size of short- and medium-span bridges internationally that have undergone long-
term frequency monitoring, this is perhaps not surprising. However, as this behaviour
is not expected, steps were taken to ensure that this was not a measurement error. The
first step was to ensure that the anomalous behaviour was measured throughout the entire
monitoring period. This ensures no time-dependent fault in the sensor, such as incorrect
repositioning after a battery replacement. This check showed that measurements were
distributed across the entire monitoring period. The second step was to check the long-term
sensor against other reference sensors. This was performed over 1 h with two additional
MEL accelerometers (other than the long-term sensor) and two high-precision wireless
sensors. All sensor’s acceleration and natural frequency measurements agreed with the
long-term sensor, indicating that the sensor was giving accurate measurements. After
the frequency was extracted from all five sensors using the same method, the extracted
frequencies showed no variations. Having established that the pattern being observed was
genuine (i.e., not due to experimental error), time was spent trying to identify the source
of this behaviour. Ultimately, the specific source of the behaviour was not established.
However, of the possible sources of the behaviour, a change in boundary conditions
occurring at 13 ◦C was considered the most plausible/likely cause, or at least one that
should be investigated further. Unfortunately, checking this would require further field
work, e.g., instrumenting the bridge to track bearing movements, which was not possible
in the timeframe of this study.

The observed frequency–temperature relationships discussed above have implications
for the data modelling process. The sub-zero behaviour of the bridges (mainly Bridges
2 and 3) can, for the most part, be ignored, as the portion of the dataset corresponding to
sub-zero temperatures is very small (approximately 1.3%). If a significant amount of data
were related to sub-zero temperatures, two data models would be required, one for above
zero degrees and one for below zero degrees. However, in this dataset, only a minimal
amount of sub-zero temperature events occurred, and so only one data model is required.
One necessary caveat is that the data model will be unreliable at predicting the behaviour
during sub-zero temperature events.

The bilinear relationship, which was observed in the Bridge 2 data, may have a more
significant effect on the accuracy of the data models. There are two options that were
considered; the first was to separate the data between temperatures below 13 ◦C and
temperatures above 13 ◦C and create two separate data models. The second was to create a
data model with all of the data and combine this with a GPR regression, possibly resulting
in a slight reduction in the model’s predictive power. Both of these options were tested
when developing the data models. However, it was determined that the amount of data
above 13 ◦C (approximately 20%) was insufficient to provide accurate results. Therefore,
the data models created for each mode of Bridge 2 were developed using all of the data,
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and the prediction capability was found to be acceptable. This was due to the GPR method
offering a universal approximator when estimating relationships between variables.

5. MID Method Overview

The MID process is described in [15], but in this section, we will provide an overview.
Many SHM studies have used data modelling [22–25], but no workflow for modelling
sparse data collected from short- and medium-span bridges has been presented in the
current SHM literature. Although general principles of data modelling are known, each
dataset has subtle differences, and thus, a workflow that works for the sparse sensing data
envisioned by MID needs to be developed. The data models used in other studies have been
trained with large datasets (e.g., those available on large cable-supported bridges), which
differ in approach from the ones used here. The workflow developed in [15] is presented in
Figure 12. It includes considerations that should be made when using a limited dataset in
conjunction with a data model and, in particular, a regression analysis.

been trained with large datasets (e.g., those available on large cable-supported bridges), 
which differ in approach from the ones used here. The workflow developed in [15] is pre-
sented in Figure 12. It includes considerations that should be made when using a limited 
dataset in conjunction with a data model and, in particular, a regression analysis.

Figure 12. Flowchart showing the workflow for MID.

As shown above, when creating a data model using regression techniques, several 
factors need to be considered. The below points give a brief overview of the stages that 
are considered before training the data models.
(a) Choose dependent variable: This is the variable of interest, in this case, the natural 

frequency of the bridge, e.g., the natural frequency of a given mode.
(b) Choose independent variables: These variables are used to predict the dependent 

variable. When using MID, a balance needs to be struck between having predictors 
(e.g., temperature) that sufficiently influence the dependent variable while also being 
easy to measure with low-cost equipment. The predictors that were chosen for this 
study are as follows:
Air temperature at the time of frequency measurement;
Air temperature both 1 and 6 h prior to frequency measurement to capture any po-
tential thermal lag of the material/bridge structure;
Humidity, which has been shown in some studies [26] to impact the natural fre-
quency of structures.

(c) Normalisation of the data: While not all regression methods require the data to be 
normalised, linear regression methods are affected by non-normalised data. The nor-
malisation of the data can also be necessary when determining which of the predic-
tors is the most influential in the data models. For this process, the dependent varia-
ble and all independent variables have been normalised.

(d) Validate underlying assumptions: Before any regression analysis, the following as-
sumptions for the data need to be validated:

I. Linearity of the phenomenon measured (for linear regression);
II. Constant variance of the error terms;
III. Independence of the error terms;
IV. Normality of the error term distribution.

Testing of assumptions I to III is usually performed by plotting residuals against pre-
dicted responses. The distribution of the resulting graph allows for the checking of any 
assumption violations. Details of how to check the assumptions can be found in [27]. The 
last assumption (IV) is the normality of the error term distribution, which is checked by 
plotting the residual distribution.

Figure 12. Flowchart showing the workflow for MID.

As shown above, when creating a data model using regression techniques, several
factors need to be considered. The below points give a brief overview of the stages that are
considered before training the data models.

(a) Choose dependent variable: This is the variable of interest, in this case, the natural
frequency of the bridge, e.g., the natural frequency of a given mode.

(b) Choose independent variables: These variables are used to predict the dependent
variable. When using MID, a balance needs to be struck between having predictors
(e.g., temperature) that sufficiently influence the dependent variable while also being
easy to measure with low-cost equipment. The predictors that were chosen for this
study are as follows:
Air temperature at the time of frequency measurement;
Air temperature both 1 and 6 h prior to frequency measurement to capture any
potential thermal lag of the material/bridge structure;
Humidity, which has been shown in some studies [26] to impact the natural frequency
of structures.

(c) Normalisation of the data: While not all regression methods require the data to
be normalised, linear regression methods are affected by non-normalised data. The
normalisation of the data can also be necessary when determining which of the
predictors is the most influential in the data models. For this process, the dependent
variable and all independent variables have been normalised.

(d) Validate underlying assumptions: Before any regression analysis, the following
assumptions for the data need to be validated:
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I. Linearity of the phenomenon measured (for linear regression);
II. Constant variance of the error terms;
III. Independence of the error terms;
IV. Normality of the error term distribution.

Testing of assumptions I to III is usually performed by plotting residuals against
predicted responses. The distribution of the resulting graph allows for the checking of any
assumption violations. Details of how to check the assumptions can be found in [27]. The
last assumption (IV) is the normality of the error term distribution, which is checked by
plotting the residual distribution.

(e) Multicollinearity: Multicollinearity occurs when independent variables in a regres-
sion model are correlated with each other. If this happens, it is hard to isolate the
relationship between each of the independent variables and the dependent variables.
Multicollinearity will generally weaken the predictive power of the regression model.
Multicollinearity is typically more of an issue when many variables are being studied.
In this paper, there are relatively few variables. However, several of the variables are
temperature-based, and the likelihood that these variables will be correlated is high,
so it is essential to ensure they will not adversely affect the data model.

(f) Select best predictors: Removing independent variables with little predicting power
is important for several reasons as follows:

I. It reduces the time needed to train the regression.
II. It reduces the complexity of the regression analysis.
III. It allows the analyst to gain a better understanding of the behaviour of the structure.

Filtering out the less important factors identifies which of the remaining factors are
most strongly correlated to the dependent variable’s observed behaviour.

There are many different methods available to aid feature selection in a regression
context. Here, a relief-based approach is adopted; relief-based approaches avoid the need
to carry out an exhaustive comparison between candidate features, instead relying on a
nearest neighbour type measure to assess inter-relationships. ReliefF [28] is a variant that
assigns weights to the predictors given a set of observations.

(g) Allocate initial training and testing data: The next step is to decide how much data
to use for the training of the model and how much to use for the testing of the model.
To have the best predictive power, the model will most likely need to be trained with
‘one cycle of data’. These data should include all expected ranges of temperatures.

Once the above steps are complete, the first iteration of the data model is complete. It
is also necessary to check how outliers in the dataset affect the model.

6. Refinements to MID: Automation and Consistency

To be able to operate across a range of bridges, some refinement of the Minimal Infor-
mation Data-modelling (MID) method is required to achieve automation and consistency,
as these factors are crucial for its scalable utility across an entire bridge network. Ensuring
consistency in the application of MID is essential to facilitate the possibility of widespread
implementation and to streamline the data modelling process. Automation simplifies
and standardises the implementation process, making it more efficient and reducing the
likelihood of errors.

One effective approach to achieve automation and consistency is through the develop-
ment and utilisation of software, programs, or scripts tailored for MID implementation. To
this end, MATLAB (R2019a) was used to produce tools that can offer several functionalities
to streamline the process.

• Automated Outlier Detection: The scripts can automate outlier detection using various
methods, facilitating comparisons of data before and after outlier removal. This enables
informed decisions regarding the inclusion or exclusion of outliers in the analysis.
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• Regression Assumption Checking: The scripts can assess regression assumptions of
the predictors and provide functions to transform the data if they do not meet these
assumptions. This ensures the validity of the regression analysis and enhances the
reliability of the results.

• Multicollinearity Check: The scripts can check for multicollinearity among predictor
variables and offer functions to remove data that does not pass the check. Addressing
multicollinearity enhances the robustness of the data models generated by MID.

• Data Splitting: The scripts can automate the process of splitting the data into training
and testing pools.

• Regression Methods Selection: The scripts can provide functions to undertake regres-
sion using different methods, allowing users to input their preferences. This flexibility
enables users to explore various regression techniques and select the most suitable
approach for their specific bridge assessment needs.

• Comparison Metrics Display and Saving: The scripts can display and save comparison
metrics from the resulting data models, enabling users to compare the performance of
different regression methods. This functionality facilitates informed decision making
and enhances the transparency of the assessment process.

7. Application of MID to the Studied Bridges

In this section, the data collected from the four bridges will be used to validate the
data modelling process described in Section 5 with the automation refinements described
in Section 6.

The primary purpose of the data model is to remove the environmental and operational
effects from natural frequency data so that a potential change in the condition of the bridge
can be identified. As long as the future environmental variable stays within the range of
environmental variables that the data models are trained, then it is expected that reliable
predictors will be made. If, in the future, there are extreme environmental conditions,
such as extreme temperatures, then the data models may need to be retained with the new
environmental conditions to give reliable predictions. The data models created in [15],
trained on data from a steel road bridge, have shown that they can remove enough of
the environmental effects to identify possible damage using the residuals. Here, the data
modelling process developed in [15], including the refinements described in Section 6, will
be trialled on data from differing bridge types (varying construction type and span). This
will show if the MID process is robust enough to remove sufficient environmental effects so
that the magnitudes of frequency shift known to indicate potential damage can be detected.

Section 7.1 presents the results of two data models out of a total of fifteen (one for each
natural frequency identified). Due to some unusual behaviour found in one mode of one
bridge, Section 7.2 investigates the collected data to determine the cause of this discrepancy.
Finally, Sections 7.3 and 7.4 present and utilise a standardised method to determine the
level of frequency shift that all the data models can detect.

7.1. MID Results

In this section, two figures are shown to give an example of the data model results after
the MID process outlined in Section 5. After each of the data models (one for every natural
frequency) has been trained, every observation has the extracted frequencies resulting from
the SHM system and the predicted natural frequencies resulting from the data model. The
residuals are determined for each observation and are defined as the difference between
predicted values for the natural frequency and the natural frequency obtained from the
SHM system.

Figure 13 presents the frequency with the highest relative variation (seen in Table 2),
for Bridge 1, mode 1. Figure 14 presents the lowest relative variation frequency (Table 2) for
Bridge 2, mode 2. Both Figures 13 and 14 are in the same format. In plot (a), the extracted
frequencies are shown with the blue dots, and the predicted frequencies from the data
model are shown with the orange dots. The black dashed vertical line separates the training
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and testing data. Plots b and c zoom into one week of training and testing data, respectively.
The periods that are shown in plots b and c are indicated with the red boxes in plot a. Plot
d shows the residuals of the data model against time.

Figures 13a and 14a show that the data models can accurately predict the annual trends 
of both frequencies. Figures 13b,c and 14b,c show that the daily frequency trends are also 
accurately predicted by the models. Figures 13c and 14c show that the testing data are of 
particular interest, as these plots show how well the data models can predict future be-
haviour. This is the case because the testing data have not been used in the training pro-
cess, and so if the data model can predict the testing data, it should be able to predict 
future behaviour, which it also has not been trained on. It should be noted here that the 
performance of the testing data from both models is comparable to the training data. This 
indicates that the predictive power of the data models has been maximised [27]. Figures 
13d and 14d show the difference between the predicted values and the extracted values, 
i.e., the residuals. Viewing the residuals in this manner allows the comparison of model 
performance between the training and testing data. This figure indicates no periods of 
significantly better or worse prediction ability for either of the data models. As previously 
discussed in Section 4.3, the modes for Bridge 2 demonstrated some bimodal behaviour, 
depending on whether the temperature was above or below 13 °C. However, it can be seen 
in Figure 14 that the data model was able to account for this, as the residuals shown in 
Figure 14d are relatively consistent across the full monitoring period. Figures 13 and 14 
are representative of what the data models for the other modes look like, so to avoid rep-
etition, only these two are shown here.

 

Figure 13. Results from a data model (Bridge 1—1st frequency). (a) Full experimental dataset and corre-
sponding values predicted by the regression model (divided into training and testing). (b) Zoomed-in 
view showing approximately 1 week of data during the training phase. (c) Zoomed-in view showing 
approximately 1 week of data during the testing phase. (d) Training and testing residuals across the 
whole monitoring period.

Figure 13. Results from a data model (Bridge 1—1st frequency). (a) Full experimental dataset

and corresponding values predicted by the regression model (divided into training and testing).

(b) Zoomed-in view showing approximately 1 week of data during the training phase. (c) Zoomed-in

view showing approximately 1 week of data during the testing phase. (d) Training and testing

residuals across the whole monitoring period.

Figures 13 and 14 can give us an indication of the performance of the data models.
When studying these plots, we can look at how accurately the data models can predict
the variations in the original data. In this case, our variations are the annual and daily
changes to the natural frequency. Figures 13 and 14 show that the performance of both data
models presented is similar, i.e., that the variations in the data can be predicted in both
cases. Figures 13a and 14a show that the data models can accurately predict the annual
trends of both frequencies. Figure 13b,c and Figure 14b,c show that the daily frequency
trends are also accurately predicted by the models. Figures 13c and 14c show that the
testing data are of particular interest, as these plots show how well the data models can
predict future behaviour. This is the case because the testing data have not been used
in the training process, and so if the data model can predict the testing data, it should
be able to predict future behaviour, which it also has not been trained on. It should be
noted here that the performance of the testing data from both models is comparable to
the training data. This indicates that the predictive power of the data models has been
maximised [27]. Figures 13d and 14d show the difference between the predicted values
and the extracted values, i.e., the residuals. Viewing the residuals in this manner allows
the comparison of model performance between the training and testing data. This figure
indicates no periods of significantly better or worse prediction ability for either of the data
models. As previously discussed in Section 4.3, the modes for Bridge 2 demonstrated some
bimodal behaviour, depending on whether the temperature was above or below 13 ◦C.
However, it can be seen in Figure 14 that the data model was able to account for this, as the
residuals shown in Figure 14d are relatively consistent across the full monitoring period.
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Figures 13 and 14 are representative of what the data models for the other modes look like,
so to avoid repetition, only these two are shown here.

 

Figure 14. Results from a data model (Bridge 2—2nd frequency). (a) Full experimental dataset and 
corresponding values predicted by the regression model (divided into training and testing). (b) 
Zoomed-in view showing approximately 1 week of data during the training phase. (c) Zoomed-in 
view showing approximately 1 week of data during the testing phase. (d) Training and testing re-
siduals across the whole monitoring period.

The overall goal was to use the data model to identify a change in stiffness. For this 
to be possible, the data models must also be able to identify stable behaviour. Based on 
basic visual inspections during the site visits, it is assumed that the bridges have not de-
veloped damage during the monitoring period. Therefore, the 15 data models should re-
flect this behaviour. Table 3 shows the distribution of the training and testing residuals (in 
Hz) for each of the identified modes. The training residuals are shown with blue bars, and 
the testing residuals are shown with orange bars. For example, the distributions plotted 
for mode 1 of Bridge 1 (top left of the table) are simply plotting the training and testing 
residuals previously shown in Figure 13d. Similarly, the training and testing residuals 
shown for mode 2 of Bridge 2 in Table 3 are simply a histogram plot of the training and 
testing residuals in Figure 14d. Table 3 shows that the testing data from all but one of the 
data models (orange bars) fall within the distribution of the training data. This indicates 
that the behaviour of the bridges remained unchanged over the monitoring period. Mode 
4 of Bridge 1 shows some deviation; the distribution of the testing data does not have the 
same distribution as the training residuals. The discrepancy in the distributions shown is 
only slight, but it can be seen that the testing residuals are shifted to the right of the train-
ing residuals. This behaviour will be investigated in Section 7.2 to try and identify the 
cause of the discrepancy between the training and testing residuals. Table 3 shows that 
each of the other 14 data models has identified stable behaviour. The sensitivity to damage 
of the data models is still unknown. An indication of the sensitivity can be obtained by 
looking at the range of the residuals (shown on the x-axis in the figures). The smaller the 
range of the residuals, the increased likelihood that the data model will be able to detect 
small changes in frequency. For example, mode 1, Bridge 1 has a range of ±0.03 Hz, 
whereas the range of the residuals for mode 1, Bridge 3 is ±0.1 Hz, so it is likely that a 
smaller frequency shift will be detectable in mode 1, Bridge 1 than in mode 1 of Bridge 3. 
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and corresponding values predicted by the regression model (divided into training and testing).

(b) Zoomed-in view showing approximately 1 week of data during the training phase. (c) Zoomed-in

view showing approximately 1 week of data during the testing phase. (d) Training and testing

residuals across the whole monitoring period.

The overall goal was to use the data model to identify a change in stiffness. For this to
be possible, the data models must also be able to identify stable behaviour. Based on basic
visual inspections during the site visits, it is assumed that the bridges have not developed
damage during the monitoring period. Therefore, the 15 data models should reflect this
behaviour. Table 3 shows the distribution of the training and testing residuals (in Hz)
for each of the identified modes. The training residuals are shown with blue bars, and
the testing residuals are shown with orange bars. For example, the distributions plotted
for mode 1 of Bridge 1 (top left of the table) are simply plotting the training and testing
residuals previously shown in Figure 13d. Similarly, the training and testing residuals
shown for mode 2 of Bridge 2 in Table 3 are simply a histogram plot of the training and
testing residuals in Figure 14d. Table 3 shows that the testing data from all but one of the
data models (orange bars) fall within the distribution of the training data. This indicates
that the behaviour of the bridges remained unchanged over the monitoring period. Mode 4
of Bridge 1 shows some deviation; the distribution of the testing data does not have the
same distribution as the training residuals. The discrepancy in the distributions shown is
only slight, but it can be seen that the testing residuals are shifted to the right of the training
residuals. This behaviour will be investigated in Section 7.2 to try and identify the cause
of the discrepancy between the training and testing residuals. Table 3 shows that each of
the other 14 data models has identified stable behaviour. The sensitivity to damage of the
data models is still unknown. An indication of the sensitivity can be obtained by looking at
the range of the residuals (shown on the x-axis in the figures). The smaller the range of the
residuals, the increased likelihood that the data model will be able to detect small changes
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in frequency. For example, mode 1, Bridge 1 has a range of ±0.03 Hz, whereas the range of
the residuals for mode 1, Bridge 3 is ±0.1 Hz, so it is likely that a smaller frequency shift
will be detectable in mode 1, Bridge 1 than in mode 1 of Bridge 3. Looking at the range this
way is a crude indicator, so Section 7.4 will identify, in greater detail, the level of frequency
shift that can be determined.

Table 3. Histograms showing training (blue) and testing (orange) residuals for each of the

15 data models.
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Looking at the range this way is a crude indicator, so Section 7.4 will identify, in greater 
detail, the level of frequency shift that can be determined.

Table 3. Histograms showing training (blue) and testing (orange) residuals for each of the 15 data 
models.

7.2. Study of Bridge 1, Mode 4 Discrepancy in the Residuals
In this section, the discrepancy that was observed in Table 3 between the distributions 

of the training and testing residuals of mode 4 of Bridge 1 will be investigated. This can 
be seen both in the residuals of the data model and in the natural frequency data presented 
in Figure 15. This figure shows the fourth mode frequency for the entire monitoring pe-
riod. To understand when the highest frequencies were observed, the data have been di-
vided into two groups. The data higher than the upper 95% confidence interval are shown 
with the orange dots, and any frequency that is below the 95% confidence interval is 
shown with blue dots. The two vertical red lines in Figure 15 indicate the proportion of 
the testing data that caused the discrepancy in residuals/data, leading to the overall testing 
data being dissimilar to the training data. Using this plot, it can be observed that 60% of 
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7.2. Study of Bridge 1, Mode 4 Discrepancy in the Residuals

In this section, the discrepancy that was observed in Table 3 between the distributions
of the training and testing residuals of mode 4 of Bridge 1 will be investigated. This can be
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seen both in the residuals of the data model and in the natural frequency data presented in
Figure 15. This figure shows the fourth mode frequency for the entire monitoring period.
To understand when the highest frequencies were observed, the data have been divided
into two groups. The data higher than the upper 95% confidence interval are shown with
the orange dots, and any frequency that is below the 95% confidence interval is shown
with blue dots. The two vertical red lines in Figure 15 indicate the proportion of the testing
data that caused the discrepancy in residuals/data, leading to the overall testing data being
dissimilar to the training data. Using this plot, it can be observed that 60% of the highest
frequency data (orange dots) are contained in this period, despite only accounting for 10%
of the data. The fact that there is an increase in frequency in a discreet period followed by
a return to normal behaviour indicates that it was likely due to a transient change in the
environment as opposed to a change in the structure.
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period followed by a return to normal behaviour indicates that it was likely due to a tran-
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Figure 15. Frequency 4 from Bridge 1 over the entire monitoring period; the highest frequencies are 
highlighted.

Knowing that the majority of the highest observed frequencies occurred during the 
period indicated in Figure 15, the next step was to determine if any other abnormalities 
were observed during this period. Figure 16 presents the results of that investigation. Fig-
ure 16a shows the same data that was presented in Figure 15, including an average of the 
vertical RMS acceleration shown with a yellow line. The vertical RMS acceleration 
measures the energy in the acceleration data and will be affected by the amount of traffic 
on the bridge. Three downward spikes are observed in the data, all occurring at the same 
period each year, namely, at the end of Q4 2018, 2019, and 2020. These sharp reductions 
in the vertical RMS values may result from the reduced traffic during the Christmas holi-
day period. This behaviour is as expected; however, a more prolonged drop in the RMS 
values can be seen in the period of interest in the testing data (between T3 and T4 lines). 
This drop does not occur due to a periodic event, like the observed downward spikes due 
to the reduced Christmas holiday traffic. To ensure that the drop in RMS values occurring 
between the T3 and T4 lines is abnormal, the same period during the previous year was 
used as a comparison. This comparison period is indicated between the T1 and T2 red 
lines in Figure 16a. Figure 16b,c show the histograms of the RMS values during these two 
periods. Figure 16b shows both the RMS values for all the data shown with the blue bar 
and the RMS values during the T1 to T2 period. Figure 16c again shows the RMS values 
for all the data shown with the blue bar and the RMS values during the T3 to T4 period. 
If these two plots are compared, it can be seen that the RMS values during the first periods 
(T1 and T2) match the distribution of the overall data, whereas the distribution of the RMS 
values during the second period (T3 and T4) show a significant reduction. Figure 16c 
shows that there was a reduction in the RMS values during the period of the testing data, 
which caused the discrepancy between the training and testing data. One possible reason 
has been given for a reduction in RMS values: a reduction in traffic, like that shown during 
the Christmas period. However, no such obvious event occurred during the period in 
question. It was observed during site visits that traffic control measures were in place 
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Knowing that the majority of the highest observed frequencies occurred during the
period indicated in Figure 15, the next step was to determine if any other abnormalities
were observed during this period. Figure 16 presents the results of that investigation.
Figure 16a shows the same data that was presented in Figure 15, including an average of
the vertical RMS acceleration shown with a yellow line. The vertical RMS acceleration
measures the energy in the acceleration data and will be affected by the amount of traffic
on the bridge. Three downward spikes are observed in the data, all occurring at the same
period each year, namely, at the end of Q4 2018, 2019, and 2020. These sharp reductions in
the vertical RMS values may result from the reduced traffic during the Christmas holiday
period. This behaviour is as expected; however, a more prolonged drop in the RMS values
can be seen in the period of interest in the testing data (between T3 and T4 lines). This
drop does not occur due to a periodic event, like the observed downward spikes due to
the reduced Christmas holiday traffic. To ensure that the drop in RMS values occurring
between the T3 and T4 lines is abnormal, the same period during the previous year was
used as a comparison. This comparison period is indicated between the T1 and T2 red
lines in Figure 16a. Figure 16b,c show the histograms of the RMS values during these two
periods. Figure 16b shows both the RMS values for all the data shown with the blue bar
and the RMS values during the T1 to T2 period. Figure 16c again shows the RMS values
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for all the data shown with the blue bar and the RMS values during the T3 to T4 period. If
these two plots are compared, it can be seen that the RMS values during the first periods
(T1 and T2) match the distribution of the overall data, whereas the distribution of the RMS
values during the second period (T3 and T4) show a significant reduction. Figure 16c shows
that there was a reduction in the RMS values during the period of the testing data, which
caused the discrepancy between the training and testing data. One possible reason has
been given for a reduction in RMS values: a reduction in traffic, like that shown during the
Christmas period. However, no such obvious event occurred during the period in question.
It was observed during site visits that traffic control measures were in place around that
time. These traffic measures restricted the speed of the traffic in one direction. The exact
dates of the traffic control measures are unknown, so this is speculative, but a reduction in
traffic speed could reduce the energy in the acceleration signal. The reduced energy could,
in turn, lead to reduced accuracy in extracting the modal frequency.
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Figure 16. Reduction in RMS values observed during the testing period. (a) Frequency 4 from Bridge 
1 over the entire monitoring period; the highest frequencies are highlighted. (b) Vertical RMS histo-
gram for the entire period and T1 to T2 period. (c) Vertical RMS histogram for the entire period and 
T3 to T4 period.

7.3. Method to Determine the Lowest Detectable Natural Frequency Shift Using MID
The development of a standardised testing method enables all data models to be 

compared fairly. A standardised method allows for the variables, such as the threshold 
values or the point at which the frequency shift is introduced, to remain constant. If this 
was not the case and the variables were changed for the testing of every data model, then 
smaller frequencies would be identified, but comparisons between detectable frequency 
shifts would not be justifiable.

The principle behind the developed method can be described using Figure 17. This 
figure shows a set of typical training and testing data residuals for the data models. The 
training residuals are shown with the blue bars, and the testing residuals are shown with 
the orange bars. As both the residual sets are normally distributed, a probability density 
estimate can be used to represent each residual set. The probability density estimate is a 
way to describe the distribution using probability and is a measure of how likely the re-
sidual is to be a certain value. Another way to visualise the probability density estimate is 
as a normalised histogram with the area under the curve equal to 1. The two probability 
density estimate curves are shown in Figure 17; the training probability density is indi-
cated by the blue dashed line, and the orange dashed line indicates the testing probability 
density. Salient information, such as the mean, can be extracted from the training and 
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7.3. Method to Determine the Lowest Detectable Natural Frequency Shift Using MID

The development of a standardised testing method enables all data models to be
compared fairly. A standardised method allows for the variables, such as the threshold
values or the point at which the frequency shift is introduced, to remain constant. If this
was not the case and the variables were changed for the testing of every data model, then
smaller frequencies would be identified, but comparisons between detectable frequency
shifts would not be justifiable.
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The principle behind the developed method can be described using Figure 17. This
figure shows a set of typical training and testing data residuals for the data models. The
training residuals are shown with the blue bars, and the testing residuals are shown with
the orange bars. As both the residual sets are normally distributed, a probability density
estimate can be used to represent each residual set. The probability density estimate is
a way to describe the distribution using probability and is a measure of how likely the
residual is to be a certain value. Another way to visualise the probability density estimate
is as a normalised histogram with the area under the curve equal to 1. The two probability
density estimate curves are shown in Figure 17; the training probability density is indicated
by the blue dashed line, and the orange dashed line indicates the testing probability density.
Salient information, such as the mean, can be extracted from the training and testing
residuals using the probability density estimate. The mean value can be obtained from
the probability density estimate and used to compare the two sets of residuals. Figure 17
shows the training residual mean with the magenta vertical dashed-dot line and the testing
residual mean with the black dashed-dot line. In this typical example, the two means are
very similar, indicating very little difference between the training and testing residuals,
i.e., stable structural behaviour. Threshold values are now chosen so that any significant
deviation between the two means can be identified, which signifies a change in the testing
residual from the training residuals. There is no accepted threshold value that will be
optimum for every structure. If the structural behaviour of a bridge normally shows only
small fluctuations, then a small deviation from this pattern may indicate an issue, whereas
if a bridge normally displays large fluctuations in dynamic behaviour, a larger threshold
value will be needed. For the method proposed, a degree of trial and error was used to
determine suitable threshold values. The starting point was to use standard deviation as a
guideline. Because the distributions were normal, the standard deviation is representative
of the percentage of data between two points. After trialling a few different values, it was
found that a 0.5 standard deviation on either side of the mean was a suitable threshold.
This 0.5 standard deviation on either side of the mean (1 standard deviation in total) is
approximately equal to 40% of the data. In Figure 17, the upper and lower threshold values
are indicated with the green dashed-dot and green dashed lines, respectively. With the
threshold values decided, the method will detect abnormal behaviour when the mean
of the testing data exceeds one of the threshold values; in other words, when the black
dashed-dot line crosses one of the green lines in Figure 17.
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Using the principles described above, the following process was developed to identify
the detectable frequency shift of each data model:

1. Fit a probability density estimate to the training residuals (blue dashed line Figure 17)
and find the upper and lower threshold values from the distribution curve properties
(two green lines in Figure 17).

2. Introduce a small frequency shift (usually 0.01 Hz) at the halfway point in the testing
data. The location of the frequency shift is arbitrary so long as there is enough data
before and after to ensure the data model can detect normal and abnormal behaviour.

3. Split the testing data into individual windows. The testing data are split so that testing
of the residuals can be performed over short time periods, as opposed to testing all
the data at once. Each window comprises 1000 points (approximately 20 days) and
has a 70% overlap. A total of 1000 points was found to be a good balance between
having enough data to produce an accurate distribution while keeping a reasonably
high time resolution. The 70% overlap allows the damage to be identified earlier than
if there was no overlap; a sufficient change in structural behaviour data needs to be
present in the window for the damage to be detected.

4. Fit a probability density estimate to each of the individual time window’s residuals
and find the residuals’ mean. Test each window to see if the testing residuals’ mean
(black dashed-dot line in Figure 17) for that window is outside of the threshold values
(two green lines in Figure 17).

5. To identify the minimum frequency shift that can reliably be detected, the frequency
shift was incrementally increased in the raw frequency data (usually by 0.01 Hz) until
both the following conditions have been satisfied:

(a) The first window that detects the shift includes the point at which the shift was
implemented. This ensures that fully healthy windows of data never indicate
damage.

(b) All windows after the first detection also detect the shift. This ensures that
after the damage is detected, all subsequent windows detect damage.

7.4. Testing Data Models to Determine the Identifiable Shift in Frequency

The final step in validating the MID process is identifying the level of natural frequency
shift that can be detected by each of the data models. This artificial frequency shift is
representative of a change in the structural behaviour of the bridge. The process described
in Section 7.3 was used for all of the data models to determine this frequency shift.

Figure 18 shows the process described on a sample of the testing residuals from the
first mode of Bridge 1. The figure has been split into two columns, labelled ‘a’ and ‘b’. The
data in column ‘a’ in the figure is the natural frequency measurements from the testing
data (blue dots) after a frequency shift of −0.005 Hz is applied at the halfway point of the
testing data (red line). The halfway point in the testing residual is indicated with a solid
red line in column (a) in Figure 18. The plots in column ‘a’ show how the testing data were
split with 1000 points of data within the red boxes. Column ‘b’ in Figure 18 shows the data
contained in each of the corresponding red boxes. These plots are in the same format as
Figure 17. Testing of each of the data windows is undertaken in the same manner described
above; the frequency shift is detected if the testing residuals’ mean (black dashed-dot line)
is outside the threshold values (two green lines). In the figure, it can be observed that the
first four windows (top four rows) do not detect a frequency shift. This is expected, as these
four windows contain data from before the frequency shift was introduced. In the last three
windows, the mean of the testing data is beyond the threshold values, indicating that the
frequency shift has been detected. The two conditions stated in Section 7.3 have been met,
meaning that this data model can detect a frequency shift of 0.005 Hz. For presentation
purposes, only the middle windows are shown (seven windows at the start have been
omitted and six at the end).
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Using the method described, the minimum frequency shift that each of the 15 data
models could reliably detect was identified. The magnitudes of the frequency shifts
that could be detected were identified, and they are shown in Table 4, along with the
mean frequency and the frequency range. For Bridge 1, mode 4, the discrepancies that
were identified in the testing data and discussed in Section 7.2 mean that the detectable
magnitude of the frequency shift does not hold much value. In Table 4, the following
observations can be made:

• The lowest detectable shifts for Bridges 1–4 are 0.005 Hz, 0.009 Hz, 0.01 Hz, and
0.01 Hz, respectively (indicated in bold in the table).

• Overall, the lowest and highest detectable frequency shifts that can be identified are
0.005 Hz and 0.06 Hz, respectively (shown underlined in the table).

• The range of the mode tends to influence the magnitude of the frequency shift that can
be detected. Smaller ranges tend to facilitate the detection of small frequency shifts.
However, there are exceptions; the bridge and mode with the largest range (Bridge 3,
mode 3) can detect a frequency shift of 0.01 Hz, which is on the lower end of what can
be detected by the data models.

• The mean of the natural frequency does not seem to significantly influence the magni-
tude of the detectable frequency shift.

The average detectable frequency shift of all 15 data models was 0.021 Hz. To put this
magnitude into context, Table 5 summarises the frequency shifts caused by damage found
in other studies. The frequency shifts range from minor damage, causing a 0.003 Hz shift,
to a loss of 73% of the pre-stressing load, causing a 1.79 Hz shift. The information contained
in Table 5 gives an indication of the size of the frequency shift that needs to be identifiable
by the data model if damage is to be detected. While the studies are all different, in Table 5,
it appears that low-severity damage generates frequency shifts of the order of 0.01 Hz, with
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larger damage resulting in shifts of the order of 0.2 Hz. One of the best benchmark studies
is [29] and their work on the Z24 bridge. Here, the authors caused significant damage to
the bridge by simulating a pier settlement by up to 80 mm. With the damage to the pier,
the natural frequency of the bridge changed by 0.12 Hz of one mode.

Table 4. Comparison of data model results. lowest detectable shifts for each bridge shown in bold.

Lowest and highest detectable frequency underlined.
Table 4. Comparison of data model results. lowest detectable shifts for each bridge shown in bold. 
Lowest and highest detectable frequency underlined.
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in other studies. The frequency shifts range from minor damage, causing a 0.003 Hz shift, 
to a loss of 73% of the pre-stressing load, causing a 1.79 Hz shift. The information con-
tained in Table 5 gives an indication of the size of the frequency shift that needs to be 
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ent, in Table 5, it appears that low-severity damage generates frequency shifts of the order 
of 0.01 Hz, with larger damage resulting in shifts of the order of 0.2 Hz. One of the best 
benchmark studies is [29] and their work on the Z24 bridge. Here, the authors caused 
significant damage to the bridge by simulating a pier settlement by up to 80 mm. With the 
damage to the pier, the natural frequency of the bridge changed by 0.12 Hz of one mode.

Comparing the detectable frequency shifts in Table 4 to the frequency shifts due to 
damage reported by others (Table 5), the data models would be able to detect a large pro-
portion of the damage implemented in the reviewed studies. While this is not definitive 
proof that the data models could detect damage, it shows that the frequency shift they can 
detect is the same order of magnitude as that caused by damage. It should be noted here 
that different types of damage or damage on long-span bridges that do not affect the 
global stiffness of the structure will most likely not be able to be detected by MID.
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Bridge 1 Bridge 2 Bridge 3 Bridge 4

Mode 1

Mean (Hz) 0.95 2.58 4.44 5.67

Range (Hz) 0.157 0.378 0.347 0.635

Detect (Hz) 0.005 0.02 0.06 0.01

Mode 2

Mean (Hz) 1.62 3.71 7.35 7.81

Range (Hz) 0.143 0.181 0.66 1.064

Detect (Hz) 0.007 0.03 0.03 0.01

Mode 3

Mean (Hz) 1.76 4.05 9.99

Range (Hz) 0.095 0.383 1.62

Detect (Hz) 0.008 0.009 0.01

Mode 4

Mean (Hz) 2.76 4.86

Range (Hz) 0.238 0.257

Detect (Hz) See Section 7.2 0.02

Mode 5

Mean (Hz) 5.19 9.33

Range (Hz) 0.373 0.479

Detect (Hz) 0.03 0.05

Table 5. Frequency shift caused by damage found in other studies.

Reference Test Structure Damage Frequency Shift Caused by Damage

[29]
Z24 bridge—post-tensioned
concrete box girder bridge

Pier settlement (20 mm and 80 mm)
Modes (4) showed a change between

0.01 Hz and 0.12 Hz

[30]
Laboratory test of pre-stressed RC

beam (6 m)
Releasing the pre-stressed tendon

from 17% to 73%
Modes (4) showed a change between

0.13 Hz and 1.79 Hz

[31]
Numerical analysis of the
Champangshiehl Bridge

A series of damages were
introduced relating to
pre-stressed tendons

Modes (2) showed a change between
0.03 Hz and 0.17 Hz

[32]
I-40 Bridge—concrete deck

supported by two steel plate girders
Cutting a beam on the bridge by

varying amounts
Modes (6) showed a change between

0.01 Hz and 0.18 Hz

[20] FE model of a 110 m arch footbridge
Damage was simulated by

changing the spring stiffness
between the piles and the bridge

Modes (4) showed a change between
0.00 Hz and 0.097 Hz

[21]
FE Model of a stress

ribbon footbridge

Damage was represented by
different spring elements’ stiffness

being modelled

Modes (12) showed a change between
0.003 Hz and 0.961 Hz

Comparing the detectable frequency shifts in Table 4 to the frequency shifts due to
damage reported by others (Table 5), the data models would be able to detect a large
proportion of the damage implemented in the reviewed studies. While this is not definitive
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proof that the data models could detect damage, it shows that the frequency shift they can
detect is the same order of magnitude as that caused by damage. It should be noted here
that different types of damage or damage on long-span bridges that do not affect the global
stiffness of the structure will most likely not be able to be detected by MID.

8. Conclusions

In this paper, we sought to address the following research question: Can the Minimal
Information Data-modelling (MID) method be refined to be robust and consistent across a
range of bridge structures? Our main result indicates that MID demonstrated the ability to
accurately predict the dynamic behaviour across the four bridges tested and successfully
identified frequency shifts comparable to other studies using fewer sensors and data inputs.

The accuracy and reliability of the MID method, as demonstrated by our findings,
hold significant implications for bridge management practices. Despite using minimal
data inputs, MID’s performance remains comparable to other more resource-intensive
methods, rendering it particularly appealing to bridge managers seeking efficient yet
accurate assessment tools for their infrastructure assets.

Moreover, the use of only two sensors in the MID method presents a practical advan-
tage, suggesting the feasibility of deploying sensors across an entire bridge network. This
scalability further enhances the potential applicability and cost-effectiveness of the MID
method in real-world bridge monitoring scenarios.

To give context to the cost–benefit analysis of the MID approach compared to tradi-
tional SHM methods, several key points must be considered. Firstly, the lack of detailed
cost reporting in existing SHM studies makes it difficult to perform a direct cost comparison.
SHM encompasses a variety of methods and technologies, each with different costs. This
diversity complicates the establishment of a standard baseline for comparison. In our study,
the hardware costs of the MID system are minimal due to the use of low-cost sensors and
components, positioning it as a highly economical option. Our primary objective was to
demonstrate the feasibility and potential advantages of the MID system, highlighting that
the hardware costs are among the lowest for effective SHM.

However, the equipment used in this study was standalone sensors that stored data
locally. As such, site visits were required so that the batteries could be replaced and the
data downloaded. Using these types of sensors across an entire bridge network would
not be practical, as undertaking site visits to collect the data is not a scalable approach. To
eliminate the need for site visits to collect data, a gateway and solar panel could be included
in the SHM system to transfer the data to a central server. However, the transfer of raw
acceleration data would be expensive in terms of both power usage and bandwidth. An
alternative (or complementary) approach would be to undertake the frequency extraction
locally within the SHM system and only transfer the frequency and temperature data. Using
the scanning rates proposed in this study would reduce the data transfer requirements
from 128 readings per second to around 10 readings (predictor + frequency) every 30 min.
For this to be feasible, further investigation would be required to automate the processing
of the acceleration data. This approach would also risk losing the raw data and, therefore,
the potential for data validation.

The MID method, as presented in this work, falls within Level 1 of Rytter’s classifi-
cations, focusing on detecting the presence of damage to the structure. While we do not
foresee MID advancing beyond the detection of damage presence, a damage detection
system installed across an entire bridge network would be highly beneficial. The ability
to identify damage at an early stage can significantly enhance the maintenance of bridges
by enabling timely interventions. However, several limitations are associated with the
MID method. MID relies on data from a limited number of sensors, making it susceptible
to failures if a single sensor malfunctions. Additionally, on long-span bridges, the sparse
sensor network may struggle to detect damage reliably. Despite these limitations, the MID
method offers a valuable, low-cost solution for initial damage detection across a bridge
network, providing an economical and effective approach to SHM. In conclusion, our
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research underscores the potential of the refined MID method as a robust and efficient
approach to bridge management. Its accuracy, scalability, and comparative performance
position it as a valuable tool for bridge managers aiming to optimise maintenance efforts
across their bridge networks.

Author Contributions: Conceptualisation, C.O. and D.H.; data curation, W.K.A.; formal analysis, C.O.

and E.J.C.; funding acquisition, D.H.; investigation, C.O.; methodology, C.O., D.H., P.M., W.K.A. and

E.J.C.; supervision, D.H. and P.M.; validation, E.J.C.; writing—original draft, C.O.; writing—review

and editing, D.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Department for the Economy (DfE) Research Studentship

and EPSRC grant number EP/R009635/1. The authors gratefully acknowledge the support of the UK

Engineering and Physical Sciences Research Council (EPSRC) through the ROSEHIPS project (Grant

EP/W005816/1).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Some models or codes that support the findings of this study are

available from the corresponding author upon reasonable request.

Acknowledgments: The authors would like to acknowledge the road authority for their support and

assistance with this work.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Magalhães, F.; Cunha, A.; Caetano, E. Vibration Based Structural Health Monitoring of an Arch Bridge: From Automated OMA to

Damage Detection. Mech. Syst. Signal Process. 2012, 28, 212–228. [CrossRef]

2. Santos, J.P.; Crémona, C.; Calado, L.; Silveira, P.; Orcesi, A.D. On-Line Unsupervised Detection of Early Damage. Struct. Control

Health Monit. 2016, 23, 1047–1069. [CrossRef]

3. Zhou, H.F.; Ni, Y.Q.; Ko, J.M. Structural Damage Alarming Using Auto-Associative Neural Network Technique: Exploration of

Environment-Tolerant Capacity and Setup of Alarming Threshold. Mech. Syst. Signal Process. 2011, 25, 1508–1526. [CrossRef]

4. Liu, Y.-C.; Loh, C.-H.; Ni, Y.-Q. Stochastic Subspace Identification for Output-Only Modal Analysis: Application to Super

High-Rise Tower under Abnormal Loading Condition. Earthq. Eng. Struct. Dyn. 2013, 42, 477–498. [CrossRef]

5. Yarnold, M.T.; Moon, F.L.; Emin Aktan, A. Temperature-Based Structural Identification of Long-Span Bridges. J. Struct. Eng. 2015,

141, 04015027. [CrossRef]

6. Hu, W.-H.; Cunha, Á.; Caetano, E.; Rohrmann, R.G.; Said, S.; Teng, J. Comparison of Different Statistical Approaches for Removing

Environmental/Operational Effects for Massive Data Continuously Collected from Footbridges. Struct. Control Health Monit.

2017, 24, e1955. [CrossRef]

7. Xiao, F.; Hulsey, J.L.; Balasubramanian, R. Fiber Optic Health Monitoring and Temperature Behavior of Bridge in Cold Region.

Struct. Control Health Monit. 2017, 24, e2020. [CrossRef]

8. Sanayei, M.; Phelps, J.E.; Sipple, J.D.; Bell, E.S.; Brenner, B.R. Instrumentation, Nondestructive Testing, and Finite-Element Model

Updating for Bridge Evaluation Using Strain Measurements. J. Bridge Eng. 2012, 17, 130–138. [CrossRef]

9. Alamdari, M.M.; Dang Khoa, N.L.; Wang, Y.; Samali, B.; Zhu, X. A Multi-Way Data Analysis Approachfor Structural Health

Monitoring of a Cable-Stayed Bridge. Struct. Health Monit. 2018, 147592171879072. [CrossRef]

10. Peeters, B.; de Roeck, G. One-Year Monitoring of the Z24-Bridge: Environmental Effects versus Damage Events. Earthq. Eng.

Struct. Dyn. 2001, 30, 149–171.

11. Lu, P. A Statistical Based Damage Detection Approach for Highway Bridge Structural Health Monitoring. Ph.D. Thesis, Iowa

State University, Ames, IA, USA, 2008.

12. Ribeiro, R.R.; Lameiras, R. Evaluation of Low-Cost MEMS Accelerometers for SHM: Frequency and Damping Identification of

Civil Structures. Lat. Am. J. Solids Struct. 2019, 16, e203. [CrossRef]

13. Ali, A.; Sandhu, T.; Usman, M. Ambient Vibration Testing of a Pedestrian Bridge Using Low-Cost Accelerometers for SHM

Applications. Smart Cities 2019, 2, 20–30. [CrossRef]

14. Lee, Y.-S.; Phares, B.; Terry, W. Development of a Low-Cost, Continuous Structural Health Monitoring System for Bridges and

Components. In Proceedings of the 2007 Mid-Continent Transportation Research Symposium, Ames, IA, USA, 16–17 August 2007.

15. O’Higgins, C.; Hester, D.; McGetrick, P.; Cross, E.J.; Ao, W.K.; Brownjohn, J. Minimal Information Data-Modelling (MID) and an

Easily Implementable Low-Cost SHM System for Use on a Short-Span Bridge. Sensors 2023, 23, 6328. [CrossRef] [PubMed]



Sensors 2024, 24, 3879 29 of 29

16. Ao, W.K.; Hester, D.; O’Higgins, C. Using Approximately Synchronised Accelerometers to Identify Mode Shapes: A Case Study.

In Proceedings of the 9th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-9),

St. Louis, MO, USA, 4–7 August 2019.

17. Xiao, F.; Chen, G.S.; Hulsey, J.L.; Dolan, J.D.; Dong, Y. Ambient Loading and Modal Parameters for the Chulitna River Bridge.

Adv. Struct. Eng. 2016, 19, 660–670. [CrossRef]

18. Xiao, F.; Hulsey, J.L.; Chen, G.S.; Xiang, Y. Optimal Static Strain Sensor Placement for Truss Bridges. Int. J. Distrib. Sens. Netw.

2017, 13, 155014771770792. [CrossRef]

19. O’Higgins, C.; Hester, D.; Ao, W.K.; McGetrick, P. A Method to Maximise the Information Obtained from Low Signal-to-Noise

Acceleration Data by Optimising SSI-COV Input Parameters. J. Sound. Vib. 2024, 571, 118101. [CrossRef]

20. Hu, W.-H.; Moutinho, C.; Caetano, E.; Magalhães, F.; Cunha, Á. Continuous Dynamic Monitoring of a Lively Footbridge for

Serviceability Assessment and Damage Detection. Mech. Syst. Signal Process. 2012, 33, 38–55. [CrossRef]

21. Hu, W.H.; Caetano, E.; Cunha, Á. Structural Health Monitoring of a Stress-Ribbon Footbridge. Eng. Struct. 2013, 57, 578–593.

[CrossRef]

22. Kim, C.; Morita, T.; Kitauchi, S.; Sugiura, K.; Engineering, E.R.; Katsura, K. Considering Varying Temperature and Traffic Load in

Long-Term Bridge Health Monitoring by Means of Bayesian Regression. In Proceedings of the 9th International Conference on

Structural Dynamics, EURODYN 2014, Porto, Portugal, 30 June–2 July 2014; Volume 9, pp. 2271–2278.

23. Comanducci, G.; Magalhães, F.; Ubertini, F.; Cunha, Á. On Vibration-Based Damage Detection by Multivariate Statistical

Techniques: Application to a Long-Span Arch Bridge. Struct. Health Monit. Int. J. 2016, 15, 505–524. [CrossRef]

24. Laory, I.; Trinh, T.N.; Smith, I.F.C.; Brownjohn, J.M.W. Methodologies for Predicting Natural Frequency Variation of a Suspension

Bridge. Eng. Struct. 2014, 80, 211–221. [CrossRef]

25. Cross, E.J.; Koo, K.Y.; Brownjohn, J.M.W.; Worden, K. Long-Term Monitoring and Data Analysis of the Tamar Bridge. Mech. Syst.

Signal Process. 2013, 35, 16–34. [CrossRef]

26. Nandan, H.; Singh, M.P. Effects of Thermal Environment on Structural Frequencies: Part I—A Simulation Study. Eng. Struct.

2014, 81, 480–490. [CrossRef]

27. Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson: London, UK, 2013; ISBN 129202190X.

28. Kira, K.; Rendell, L.A. The Feature Selection Problem: Traditional Methods and a New Algorithm. In Proceedings of the The

Tenth National Conference on Artificial Intelligence (AAAI-92), San Jose, CA, USA, 12–16 July 1992; pp. 129–134.

29. Mevel, L.; Goursat, M.; Basseville, M. Stochastic Subspace-Based Structural Identification and Damage Detection and Localisation—

Application to the Z24 Bridge Benchmark. Mech. Syst. Signal Process. 2003, 17, 143–151. [CrossRef]

30. Lin, Y.Q.; Ren, W.X.; Fang, S.E. Structural Damage Detection Based on Stochastic Subspace Identification and Statistical Pattern

Recognition: II. Experimental Validation under Varying Temperature. Smart Mater. Struct. 2011, 20, 115010. [CrossRef]

31. Nguyen, V.H.; Mahowald, J.; Maas, S.; Golinval, J.-C. Use of Time- and Frequency-Domain Approaches for Damage Detection in

Civil Engineering Structures. Shock Vib. 2014, 2014, 872492. [CrossRef]

32. Farrar, C.R.; Baker, W.E.; Bell, T.M.; Cone, K.M.; Darling, T.W.; Duffey, T.A.; Eklund, A.; Migliori, A. Dynamic Characterization

and Damage Detection in the I-40 Bridge over the Rio Grande; Technical Report; U.S. Department of Energy, Office of Scientific and

Technical Information: Los Alamos, NM, USA, 1994.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Concept Overview 
	Data Collection 
	Bridge Descriptions 
	Bridge 1 
	Bridge 2 
	Bridge 3 
	Bridge 4 

	Modal Analysis 
	Description of the Long-Term SHM System 

	Review of Collected Data 
	Acceleration Data 
	Temperature Data 
	Frequency Data 
	Time Series Frequency Data 
	Relative Variation 
	Relationships between Variables 


	MID Method Overview 
	Refinements to MID: Automation and Consistency 
	Application of MID to the Studied Bridges 
	MID Results 
	Study of Bridge 1, Mode 4 Discrepancy in the Residuals 
	Method to Determine the Lowest Detectable Natural Frequency Shift Using MID 
	Testing Data Models to Determine the Identifiable Shift in Frequency 

	Conclusions 
	References

