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It is widely believed that Bell has proved there can be no consistent local extension
of the quantum formalism. Against this, Angelidis has presented a hidden variable
theory which, he claims, makes precisely the same predictions as the quantum
formalism and which also satisfies locality. In this note, we argue that Angelidis’
theory does not live up to its inventor’s claims. ©1999 American Institute of
Physics.@S0022-2488~99!02607-9#

I. INTRODUCTION

Since the early days of quantum mechanics, a number of physicists have doubted w
quantum mechanics was a complete theory and wondered whether it was possible to ext
quantum formalism by adjoining hidden variables.1 In 1952, Bohm answered this question in th
affirmative2 and in doing so refuted von Neumann’s influential yet flawed proof that no s
extension was possible.3 However, Bohm’s hidden variable theory has not won wide supp
partly because the theory isnonlocal: there is instantaneous action at a distance. Since there
obvious problem reconciling such nonlocal theories with Relativity, hidden variable the
would look much more promising if they also satisfied locality. Accordingly, the question a
whether or notlocal hidden variable theories are possible assumes great significance. In 196
appeared to prove that this question had a negative answer:4 He showed that any local hidde
variables theory is incompatible with certain quantum mechanical predictions. Since these p
tions have been borne out by the experiments of Aspect and others5 the prospects for hidden
variable theories have looked grim.

Angelidis disagrees.6 He claims to have done to Bell what Bohm did to von Neummann:
has found a theory which is local and which generates a family of probability functions con
ing uniformly to the probability function generated by quantum mechanics. If this were true,
Angelidis’ theory would be a counterexample to Bell’s theorem and a promising path would
again be open to hidden variable theorists.

Unfortunately, Angelidis’ theory fails to live up to his claims: As formulated, the theory d
not make the same predictions as quantum mechanics, and while there is a natural extensio
theory which does make the same predictions, the extension isnot local. Bell’s Theorem stands

II. ANGELIDIS’ THEORY

The disagreement between Angelidis and Bell can most easily be understood by cons
the following thought experiment, due originally to Einstein, Podolsky, and Rosen and
simplified by Bohm.7 In this experiment, photonsg1 andg2 , created by the spontaneous annih
lation decay of the nonfactorizable singlet stateug1g2&, are emitted in opposite directions an
arrive at polarizersP1 andP2 , respectively. Behind each polarizer lies a photon detector. Ifa and
b represent the angles of polarization ofP1 and P2 then, according to quantum mechanics, t
probability that both detectors register a photon is 1/2 cos2(a2b). Could a local hidden variable
theory assign the same probabilities to this experiment as quantum mechanics?

To answer this, we need to know just what locality entails. First, let us fix our terminol
Let QF stand for the classical quantum formalism. LetpT

12(a,b) be the probability that a theory
42900022-2488/99/40(9)/4290/6/$15.00 © 1999 American Institute of Physics
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T assigns to both detectors registering a photon given that the angles of polarization area andb.
Let l represent our hidden variable andL the set of values the hidden variable could take.
p* 1(l,a)(p2* (l,b)) be the chance that the photon passes throughP1(P2) given that the system
is in statel and the angle of polarization isa~b!. Finally, let r~l! be a weight function which
represents the chance that the hidden variable takes the valuel.

Bell and Angelidis agree that any local theory should meet the following constraints:

~L1 ! pT
12~a,b!5E

L
r~l!p* 1~l,a!p* 2~l,b!,

where the functionp* 1 must not depend upon the variableb and the functionp* 2 must not
depend upon the variablea.

~L2! The specified rangeL of the variablel must depend upon neither the variablea nor the
variableb.

~L3! The functionr must depend upon neither the variablea nor the variableb.8

Bell’s claim is that no hidden variable theory which meets constraints~L1!–~L3! can yield the
same statistical predictions as QF. According to Bell, the QF probability functionpQF

12 cannot be
represented, either precisely or arbitrarily closely in the form

;a,bF1/2 cos2~a2b!5E
L

r~l!p* 1~l,a!p* 2~l,b!dl.

According to Angelidis, you can. Consider the theoryT which consists of the following four
postulates:

~P1! p* 1~l,a!5cos2~l2a!,

~P2! p* 2~l,b!5cos2~l2b!,

~P3! r~l,m!ª1/2Fd~l2m!1dS l2m1
p

2 D G ,
~P4! Lª$lu2`,l,1`%.

One can think of the hidden variablel as a common plane of polarization of the two photo
emitted when the atom decays. The functionsp* i(l,g) represent the probabilities that a photo
will be detected at wingi ( i 51 or i 52! given that the photons are plane polarized in thel
directionor in the l2 1

2p direction, and the polarizerPi is set in theg direction.
The third postulate is the ‘‘conditional probability distribution for the spherically symme

singlet stateug1 ,g2& to spontaneously disintegrate into two back to back photons plane-pola
in a specificbut randomly chosen direction, given by a variablem, out of all the equally likely
choices of directions...’’9 d is simply the Dirac delta function and the final postulate does noth
more than specify the range ofl.

T generates a family of functionspm
12 such that

pm
12~a,b!5E

L
r~l,m!p* 1~l,a!p* 2~l,b!dl51/4@11cos 2~m2a!cos 2~m2b!#,

and families of functionspm
1 andpm

2 such that

pm
15E

L
r~l,m!p* 1~l,a!dl5 1

2,
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pm
25E

L
r~l,m!p* 2~l,b!dl5 1

2.

Finally, theoryT entails the following important sentence~S!:

~S! ~;e.0!~'h.0!~;mPM !~;a,bPD !@~ um2au

,h!∨~ um2bu,h!˜upm
12~a,b!2p12~a,b!u,e#.

A logically equivalent way of writing this sentence is

~S! ~;e.0!~'h.0!~;mPM !~;a,bPD !@~mPSaøSb!˜upm
12~a,b!2p12~a,b!u,e#

whereSa5$mu2h1a,m,a1h% andSb5$mu2h1b,m,b1h%.
According to Angelidis,~S! ‘‘expresses theformal definitionof the uniform convergence o

the family of functions$pm
12umPM % to the functionpQF

12.’’
Angelidis bases his physical interpretation of this theory around~S!: ‘‘For anychosen values

of a andb, whenever a value ofm, characterising the random direction of the common plane
polarization of a single pair of back to back photons,happens by pure chanceto belong to subse
Sa or Sb , this single pair of back to back photons gets through polarisersP1 andP2 and causes
a coincidence count with probability given by avalueof the QF probability functionpQF

12.’’ 10

So if m is close to eithera or b, then the chance of a coincidence count is close to the ch
predicted by QF. But what ifm is not close toa or b? Well, in that case,~S! is still true just
because the antecedant is false. However, we cannot infer that the ‘‘single pair of back to
photons withm1PM causes a coincidence count with probability1

2 cos2(a12b1). But the single
pair of back to back photons withm1PM may fall inside another subset, say,Sa4 or Sb4 of the set
M... so that it causes a coincidence count with a different probability1

2 cos2(a42b4).’’ Angelidis
concludes that ‘‘The universal quantifiers (;mPM ) and (;a,bPD) occurring in the prefix of
the sentenceS take into account thewhole array of such possibilities... so that the detecto
accordingly register coincidence~and single! counts with the same probabilities as those given
QF for eachandeverypair of back to back photons emitted by the source.’’11

This ends the summary of Angelidis’ theory. I shall now argue that the paper contain
flaws: ~1! Angelidis’ family of functions doesnot converge uniformly to the QF probability
function; ~2! Angelidis’ theory does not predict the same probability count as those given b
for each and every pair of back to back photons emitted by the source.

III. UNIFORM CONVERGENCE

Let us examine a little more closely Angelidis’ notion of uniform convergence.
We know when a countable sequence of functions$qnunPN% defined on some domainD

uniformly converges toq: they converge uniformly if, for any small numbere we please, there is
ann such that anyqn8 ~with n8 larger thann! is within ane of q for anyvalue ofq andqn8. More
formally:

~;e.0!~'nPN!~;n8PN!~n8.n˜;ab$uqn~a,b!2q~a,b!u,e%!.

However, since Angelidis’ theory deals with the uniform convergence of anuncountable
family of functions, the definition must be extended to cover this case. So when does t
$ f mumPM %, with M uncountable, converge tog?

Angelidis extends the definition of uniform convergence by introducing the notion of a d
tion: N is adirection in X precisely when~a! N is a set of subsets ofX partially ordered by reverse
inclusion;~b! for anyx,yPN there is azPN with z#x andz#y. Example: ifX is the set of real
numbers, then the set of basic neighborhoods containing the number 0 is a direction inX.12

Then Angelidis’ definition ofuniform convergenceis as follows: LetD2 be a subset ofR2,
and letN be a direction inM. The family of functions$ f mumPM % is said to converge uniformly
 05 Jul 2007 to 129.11.21.2. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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to g on D2 if for every e.0 there exists anh.0 ~with h depending only one! corresponding to
a basic neighborhoodNh in N such that for anym in M and anyx in D2 wheneverthe values of
m are inNh then u f m(x)2g(x)u,e holds. In symbols this becomes,

~;e.0!~'h.0!~;mPM !~;xPD2!~mPNh˜upm
12~a,b!2p12~a,b!u,e#.

Now, it isn’t at all clear what theNh are supposed to be here. Angelidis tells us that they
basic neighborhoods~unlike Angelidis’Nx! and it is natural to think that they are basic neighb
hoods ofh. But then, why quantify over the variableh? And indeed, it would be perfectly all righ
to say that$ f mumPM % uniformly converges tof h iff, for any e there is some basic neighborhoo
of h such that anym in Nh , u f m(x)2 f h(x)u,e. But hereh is a namefor an element ofR—it is
not a free variable which can be quantified over; nor is there any reason whyh has to be greate
than zero.

The ambiguity of theNh allows Angelidis to make a serious mistake in his formal definit
of uniform convergence. Angelidis claims that sentence~S! expresses the formal definition o
uniform convergence. Recall that this sentence is

~S! ~;e.0!~'h.0!~;mPM !~;a,bPD !@~ um2au

,h!∨~ um2bu,h!˜upm
12~a,b!2p12~a,b!u,e#.

.

In this caseNh5$mua2h,m,a1h%. Again, this significantly differs from Angelidis’ own
definition ofSa on p. 1645, whereSa5$mua22e,m,a12e%. For Nh the subscript is an index
of the distance froma that them in Nh are allowed to be. ForSa the subscript tells us which valu
of D the m in Sa are close to.

Worse still,~S! doesnot express the notion of uniform convergence. For~S! says that ifm is
close toa or is close tob then pm

12 is close top12 at ~a,b!. We require something more o
uniform convergence—we require that ifm be close toa or b then pm

12 be close top12 for all
values of these functions. To see how short of uniform convergence Angelidis’ definition
consider the family of functions$qm(a)ªa2m%. Let q(a) be the zero function~soq(a)50 for
all a!. Now, by lettingh5e it is easy to see that

~;e.0!~'h.0!~;mPR!~;aPR!~ um2au,h˜uqm~a!2q~a!u,e!.

So, if m is close toa thenqm is close toq at a. But there is no reasonable sense ofuniform
convergenceon which the family of functions can be said to converge to the zero function. T
for anym and for anyx, if m is sufficiently close tox then the functionqm is sufficiently close to
the functionq at the pointa—but this is a far cry from implying that the functionqm is close to
q for all values ofa.

It is clear that a family of functionsf m will not uniformly converge to the functiong if there
is somee such that, for everym there is somea,b with u f m(a,b)2g(a,b)u>e. For in such a
case, the family is always at least ane away fromg at some point̂a,b&. In Angelidis’ theory, we
can find ane such thate equals 1/4. For, for anym let a5m145 and letb5m245. Now,

pQF
12~a,b!51/2 cos2~a2b!51/2 cos2~90!50

while

pm
12~a,b!51/4@11cos 2~m2a!cos 2~m2b!#51/4@11cos 2~245!cos 2~45!#51/4.

Since every one of Angelidis’ functions is at least 1/4 away from the QF function at s
point ^a,b&, the set does not uniformly converge to the QF function.
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IV. ON THE STATISTICAL PREDICTIONS OF ANGELIDIS’ THEORY

In this section we argue that Angelidis’ theory does not make the same statistical predi
for the EPRB experiment as the quantum formalism.

Suppose we fix ana and ab and repeat the EPRB experiment many times. Then w
proportion of coincidence counts does Angelidis’ theory say we should expect? There has
suspicious change of notation in Angelidis’ paper which makes this question surprisingly dif
to answer.pQF

12(a,b), is the chance that both detectors fire given the polarizers are set at a
a andb, respectively, according to QF. We would expect any rival theory to QF to yield a sim
probability function. But Angelidis’ theory actually yields a set of probability functio
pm

12(a,b). Moreover, the superscriptm no longer represents atheory ~as it does in
‘‘ pQF

12(a,b)’’ !. Rather, it has come to represent the direction of polarization of the two pho
This is odd. We expected any competitor of QF to produce a functionpT

12(a,b) as close to
pQF

12(a,b) as is compatible with experimental error. Butpm
12(a,b) tells us only the chance of a

coincidencegiventhat the common plane of polarization of the two photons ism. In order to work
out the chance of a coincidence full stop, we need a weight functionr* (m) which tells us how
likely it is that the atom will decay into two photons plane polarized in them direction. The chance
of a coincidence will then be equal to*mr* (m)pm

12(a,b)dm. But Angelidis never tells us wha
this weight function is. Accordingly, it is hard to see how his theory manages to make
statistical predictions at all for the EPRB experiment he is attempting to model.

Angelidis seems to think that there is no need for him to specify this weight function
seems to think that sentence~S! contains all the information we need to know. Recall that~S! says
that, when hidden variablem happens by pure chance to be close toa or b, then the two photons
get through their respective polarizers with a probability close topQF

12(a,b). But, as Angelidis
admits, the conditional sentence~S! tells us nothing about what happens whenm is not close to
either a or b. However, ‘‘the single pair of back-to-back photons withmPM may fall inside
another subset, say,Sa4 or Sb4 of the setM, that is,mPSa4 OR mPSb4 , so that it causes a
coincidence count with a different probability12 cos2(a42b4), determined by the consequent inS
deduced fromS ~by modus ponens! under another value assignment.’’13 He goes on to add ‘‘The
universal quantifiers (;mPM ) and (;a,bPD) occurring in the prefix of the sentenceS take into
account thewholearray of such possibilities so that the detectors accordingly register coincid
~and single counts! with the same probabilities as those given by QF foreachandeverypair of
back to back photons emitted by the source.’’

This is not so. Angelidis’ explanation of how to interpret the physical significance ofS is not
complete. Standard quantum mechanics tells us that if a particulara andb are chosen so thata
andb are at right angles then we will never, no matter how many times we repeat the exper
register photons at both polarizers. Now, it is true that, on those particular occasions wh
back to back photons are emitted so that their common plane of polarizationm is very close to
either a or b, then the chance of a correlation will be very small. But what happens on t
occasions wherem is not close to the settings of either of the polarizers? It is true, as Ange
says, that thereexistsan a* such thata* is close tomand that, had been the casethat the
polarizer had been placed at anglea* then the probabilities ascribed byT to a coincidence coun
are the same as that ascribed by quantum mechanics. But this does not tell us what we wa
know! The situations where polarizer 1 is set at anglea* is adifferentphysical situation from the
one that was under consideration. We need to know what happens when polarizers are
particular settingsa andb and the hidden variablem is not close to either. Angelidis’ advice tha
we choose ana* close tom simply dodges the question. In effect, Angelidis is only consider
experiments wherem is close to one of the two polarizer settings. This information is not suffic
to tell us what proportion of coincidences we should expect if the polarizers are set ata andb and
the experiment repeated many times.

Perhaps, though, Angelidis could augment his theory so thatm alwaysis close to one of the
two polarizer settings. Should Angelidis accept the postulate the value of the hidden variabm is
always close to the angle of one of the two polarizers, then his theory would both asc
probability to a coincidence count and, sincepm

12(a,b) approaches arbitrarily close t
 05 Jul 2007 to 129.11.21.2. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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pQF
12(a,b), this probability can be made arbitrarily close to the probabilities ascribed by QF.

trouble with this proposal is that it straightforwardly violates the postulates of locality. In par
lar, it violates~L3!, which effectively forbids that the angle of polarization of the two back to b
photons be a function of the settings of the polarizers themselves.

V. CONCLUSION

The conclusion of this paper is clear: Angelidis has failed to provide us with a theory w
is both local and which makes the same predictions as the standard quantum formalism. A
Angelidis’ theory simply leaves Bell’s theorems untouched and the prospects for a local exte
of the quantum formalism look as slim as ever.
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