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It is widely believed that Bell has proved there can be no consistent local extension
of the quantum formalism. Against this, Angelidis has presented a hidden variable
theory which, he claims, makes precisely the same predictions as the quantum
formalism and which also satisfies locality. In this note, we argue that Angelidis’
theory does not live up to its inventor's claims. ®99 American Institute of
Physics[S0022-24889)02607-9

I. INTRODUCTION

Since the early days of quantum mechanics, a nhumber of physicists have doubted whether
quantum mechanics was a complete theory and wondered whether it was possible to extend the
quantum formalism by adjoining hidden variables 1952, Bohm answered this question in the
affirmativé and in doing so refuted von Neumann’s influential yet flawed proof that no such
extension was possibfeHowever, Bohm’s hidden variable theory has not won wide support
partly because the theory imnlocal there is instantaneous action at a distance. Since there is an
obvious problem reconciling such nonlocal theories with Relativity, hidden variable theories
would look much more promising if they also satisfied locality. Accordingly, the question as to
whether or notocal hidden variable theories are possible assumes great significance. In 1964 Bell
appeared to prove that this question had a negative arfsiershowed that any local hidden
variables theory is incompatible with certain quantum mechanical predictions. Since these predic-
tions have been borne out by the experiments of Aspect and dttiersprospects for hidden
variable theories have looked grim.

Angelidis disagree$ He claims to have done to Bell what Bohm did to von Neummann: He
has found a theory which is local and which generates a family of probability functions converg-
ing uniformly to the probability function generated by quantum mechanics. If this were true, then
Angelidis’ theory would be a counterexample to Bell's theorem and a promising path would once
again be open to hidden variable theorists.

Unfortunately, Angelidis’ theory fails to live up to his claims: As formulated, the theory does
not make the same predictions as quantum mechanics, and while there is a natural extension of his
theory which does make the same predictions, the extensiootiscal. Bell's Theorem stands.

II. ANGELIDIS’ THEORY

The disagreement between Angelidis and Bell can most easily be understood by considering
the following thought experiment, due originally to Einstein, Podolsky, and Rosen and later
simplified by Bohm’ In this experiment, photong; andy,, created by the spontaneous annihi-
lation decay of the nonfactorizable singlet stggey,), are emitted in opposite directions and
arrive at polarizer®, andP,, respectively. Behind each polarizer lies a photon detectar akid
B represent the angles of polarization®f and P, then, according to qguantum mechanics, the
probability that both detectors register a photon is 1/3@esg). Could a local hidden variable
theory assign the same probabilities to this experiment as quantum mechanics?

To answer this, we need to know just what locality entails. First, let us fix our terminology.
Let QF stand for the classical quantum formalism. p&f,(«,3) be the probability that a theory
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T assigns to both detectors registering a photon given that the angles of polarizatioarai®.
Let \ represent our hidden variable andthe set of values the hidden variable could take. Let
p* 1(\,a)(p3 (\,B)) be the chance that the photon passes thrdgl®,) given that the system
is in statex and the angle of polarization i8(8). Finally, let p(\) be a weight function which
represents the chance that the hidden variable takes the nvalue

Bell and Angelidis agree that any local theory should meet the following constraints:

(L1) pTifa,B)= fAP()\)p* 1N, @)p* (N, B),

where the functionp*; must not depend upon the variahfeand the functionp*, must not
depend upon the variable

(L2) The specified rangd of the variablex must depend upon neither the variabl@or the
variable 8.

(L3) The functionp must depend upon neither the variableor the variables.?

Bell's claim is that no hidden variable theory which meets constrairits—(L3) can yield the
same statistical predictions as QF. According to Bell, the QF probability funpf#ép, cannot be
represented, either precisely or arbitrarily closely in the form

Va,B

12 cod(a—p)= jAp(?\)IO* 1N a)p* (N, B)dN.

According to Angelidis, you can. Consider the thedrwhich consists of the following four
postulates:

(II;)  p*1(N,a@)=cog(A—a),

(Ily)  p*2(N,B)=coS(\—p),

(I,) p(x,m==1/2[ S(N— )+ 5(7\_M+ g)

(Thy)  A:={\|—co<A<+o}.

One can think of the hidden variableas a common plane of polarization of the two photons
emitted when the atom decays. The functigris(\,y) represent the probabilities that a photon
will be detected at wing (i=1 or i=2) given that the photons are plane polarized in khe
directionor in the A — 37 direction, and the polarize®; is set in they direction.

The third postulate is the “conditional probability distribution for the spherically symmetric
singlet statgy,,y,) to spontaneously disintegrate into two back to back photons plane-polarized
in a specificbut randomly chosen direction, given by a variajpleout of all the equally likely
choices of directions..¥ §is simply the Dirac delta function and the final postulate does nothing
more than specify the range f

T generates a family of functions”;, such that

P*1a,B)= jAP(NM)IO* 1N a@)p* (N, B)dN=1/41+cos Au—a)cos Au—B)],

and families of functiong#; andp*, such that

p#l: J'AP()\aM)p* l()\va)d)\: %,
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pHo= fAP()\,M)P* »(N,B)dN=3.

Finally, theoryT entails the following important senten¢g):
(2) (Ye>0)(9>0)(YueM)(Va,BeD)[(|u—al
<) 0(lpu—Bl<n)—=[p*1a,B)—pida,B)|<e].

A logically equivalent way of writing this sentence is

(2) (Ve>0)(Fn>0)(VueM)(Va,BeD)[ (e S,USp—|p 1aa, )~ piA e, B)|<e]

whereS,={u|— 7+ a<u<a+n} andSg={u|— n+B<u<B+n}.

According to Angelidis(2) “expresses thdormal definitionof the uniform convergence of
the family of functions{p*,,|u € M} to the functionp®F,,.”

Angelidis bases his physical interpretation of this theory arqd*“For anychosen values
of a and B, whenever a value qgf, characterising the random direction of the common plane of
polarization of a single pair of back to back photohappens by pure chande belong to subset
S, or Sg, this single pair of back to back photons gets through polarBgrand P, and causes
a coincidence count with probability given byvalue of the QF probability functiorp®™;,.” °

So if w is close to either or B, then the chance of a coincidence count is close to the chance
predicted by QF. But what ifx is not close toa or 8? Well, in that case(X) is still true just
because the antecedant is false. However, we cannot infer that the “single pair of back to back
photons withu; e M causes a coincidence count with probabiftyos(a;— ;). But the single
pair of back to back photons with, e M may fall inside another subset, s&, or Sg, of the set
M... so that it causes a coincidence count with a different probaBitiys(e,—B,).” Angelidis
concludes that “The universal quantifiery¥ g e M) and (Va,8 e D) occurring in the prefix of
the sentence, take into account thevhole array of such possibilities... so that the detectors
accordingly register coincidenc¢and singlé counts with the same probabilities as those given by
QF for eachandeverypair of back to back photons emitted by the sourcg.”

This ends the summary of Angelidis’ theory. | shall now argue that the paper contains two
flaws: (1) Angelidis’ family of functions doesot converge uniformly to the QF probability
function; (2) Angelidis’ theory does not predict the same probability count as those given by QF
for each and every pair of back to back photons emitted by the source.

Ill. UNIFORM CONVERGENCE

Let us examine a little more closely Angelidis’ notion of uniform convergence.

We know when a countable sequence of functi¢gyne N} defined on some domaid
uniformly converges ta}: they converge uniformly if, for any small numbeme please, there is
ann such that anyq”' (with n’ larger tham) is within ane of g for anyvalue ofq andq”’. More
formally:

(Ve>0)(IneN)(Vn’ eN)(n'>n—Vap{|q"(a.8)—a(a,B)|<e}).

However, since Angelidis’ theory deals with the uniform convergence oftimgountable
family of functions, the definition must be extended to cover this case. So when does the set
{f#|w e M}, with M uncountable, converge g

Angelidis extends the definition of uniform convergence by introducing the notion of a direc-
tion: N is adirectionin X precisely wheria) N is a set of subsets of partially ordered by reverse
inclusion;(b) for anyx,y e N there is aze N with zCx andzCy. Example: ifX is the set of real
numbers, then the set of basic neighborhoods containing the number 0 is a directiéh in

Then Angelidis’ definition ofuniform convergences as follows: LetD? be a subset oR?,
and letN be a direction irM. The family of functions{f*|u e M} is said to converge uniformly
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to g on D2 if for every e>0 there exists am>0 (with % depending only or) corresponding to
a basic neighborhool ,, in N such that for any. in M and anyx in D? whenevethe values of
w are inN, then|f#(x) —g(x)|<e holds. In symbols this becomes,

(Ve>0)(I7>0)(YueM)(VxeD?)(neN,—|p“1Aa,B)— Pl a,B)|<el.

Now, it isn’t at all clear what thé,, are supposed to be here. Angelidis tells us that they are
basic neighborhoodainlike Angelidis’N,) and it is natural to think that they are basic neighbor-
hoods of%. But then, why quantify over the variabi® And indeed, it would be perfectly all right
to say thaf{ f#|u e M} uniformly converges td ” iff, for any e there is some basic neighborhood
of 7 such that any. in N, , |f#(x) —f”(x)|<e. But herey is anamefor an element oR—it is
not a free variable which can be quantified over; nor is there any reasomilg to be greater
than zero.

The ambiguity of theN,, allows Angelidis to make a serious mistake in his formal definition
of uniform convergence. Angelidis claims that sentefEg expresses the formal definition of
uniform convergence. Recall that this sentence is

(2) (Ve=0)(Fn>0)(VueM)(Va,BeD)[(|u—qal
<pO(|u—BI<n)—|p*1Aa,B)—p1fa,B)|<€].

In this caseN,?={,u| a—np<u<a+ n}. Again, this significantly differs from Angelidis’ own
definition of S, on p. 1645, wher&,={u|a—2e<u<a+2e}. ForN, the subscript is an index
of the distance frona that thew in N, are allowed to be. Fd8, the subscript tells us which value
of Dtheu in S, are close to.

Worse still,(2) doesnot express the notion of uniform convergence. Eoy says that ifu is
close toa or is close toB then p*;, is close top;, at (a,8). We require something more of
uniform convergence—we require thatfbe close toa or 8 thenp*;, be close top,, for all
values of these functions. To see how short of uniform convergence Angelidis’ definition falls,
consider the family of functionsg*(«a):=a— u}. Letq(«a) be the zero functioisoq(a) =0 for
all @). Now, by lettingn= € it is easy to see that

(Ve>0)(I9>0)(VueR)(VaeR)(|u—al<n—[q*(a)—a(a)|<e).

So, if u is close toa theng” is close toq at «. But there is no reasonable senseuniform
convergencen which the family of functions can be said to converge to the zero function. True,
for any u and for anyx, if w is sufficiently close to then the functiorg” is sufficiently close to
the functionq at the pointa—but this is a far cry from implying that the functiagt* is close to
g for all values ofa.

It is clear that a family of function$* will not uniformly converge to the functiog if there
is somee such that, for every there is somer,8 with |f“(«,8)—g(a,B)|=€. For in such a
case, the family is always at least amaway fromg at some pointa,3). In Angelidis’ theory, we
can find ane such thate equals 1/4. For, for any let o=+ 45 and letB3= u—45. Now,

P (a, B)=1/2 coé(a— B)=1/2 cog(90)=0
while
p*ia,B)=L41+cosAu—a)cos A u—B)]=1/41+cos A —45)cos A45)]=1/4.

Since every one of Angelidis’ functions is at least 1/4 away from the QF function at some
point {«,B8), the set does not uniformly converge to the QF function.
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IV. ON THE STATISTICAL PREDICTIONS OF ANGELIDIS’ THEORY

In this section we argue that Angelidis’ theory does not make the same statistical predictions
for the EPRB experiment as the quantum formalism.

Suppose we fix are and aB and repeat the EPRB experiment many times. Then what
proportion of coincidence counts does Angelidis’ theory say we should expect? There has been a
suspicious change of notation in Angelidis’ paper which makes this question surprisingly difficult
to answerp®F,(a,B), is the chance that both detectors fire given the polarizers are set at angles
a and g, respectively, according to QF. We would expect any rival theory to QF to yield a similar
probability function. But Angelidis’ theory actually yields a set of probability functions
p*1.(a,B). Moreover, the superscripiu no longer represents aheory (as it does in
“pF (@, B)”). Rather, it has come to represent the direction of polarization of the two photons.

This is odd. We expected any competitor of QF to produce a fungtigs(«, 3) as close to
p°F (a,B) as is compatible with experimental error. Badt;( @, 8) tells us only the chance of a
coincidencegiventhat the common plane of polarization of the two photong.itnh order to work
out the chance of a coincidence full stop, we need a weight fungtfi¢m) which tells us how
likely it is that the atom will decay into two photons plane polarized ingldirection. The chance
of a coincidence will then be equal §9,0* (u) p*12(@, 8)du. But Angelidis never tells us what
this weight function is. Accordingly, it is hard to see how his theory manages to make any
statistical predictions at all for the EPRB experiment he is attempting to model.

Angelidis seems to think that there is no need for him to specify this weight function. He
seems to think that senten®) contains all the information we need to know. Recall {¥3tsays
that, when hidden variable happens by pure chance to be closextor 3, then the two photons
get through their respective polarizers with a probability clospR6(«,3). But, as Angelidis
admits, the conditional senten€®) tells us nothing about what happens wheiis not close to
either « or B. However, ‘“the single pair of back-to-back photons with= M may fall inside
another subset, sag,, or Sg, of the setM, that is,ueS,4 OR ue Sy, so that it causes a
coincidence count with a different probabilifcos(a,— B,), determined by the consequentdn
deduced fron® (by modus ponensunder another value assignment’He goes on to add “The
universal quantifiers{x € M) and (V «, 8 € D) occurring in the prefix of the senten®gtake into
account thevholearray of such possibilities so that the detectors accordingly register coincidence
(and single counjswith the same probabilities as those given by QFdachand everypair of
back to back photons emitted by the source.”

This is not so. Angelidis’ explanation of how to interpret the physical significan&isfnot
complete. Standard quantum mechanics tells us that if a partieudad 8 are chosen so thai
and g are at right angles then we will never, no matter how many times we repeat the experiment,
register photons at both polarizers. Now, it is true that, on those particular occasions when the
back to back photons are emitted so that their common plane of polarizatisrvery close to
either a or B, then the chance of a correlation will be very small. But what happens on those
occasions wherg is not close to the settings of either of the polarizers? It is true, as Angelidis
says, that ther@xistsan «* such thata™ is close touavé that, had been the casthat the
polarizer had been placed at anglé then the probabilities ascribed Byto a coincidence count
are the same as that ascribed by quantum mechanics. But this does not tell us what we wanted to
know! The situations where polarizer 1 is set at angleis adifferentphysical situation from the
one that was under consideration. We need to know what happens when polarizers are at the
particular settinggr and 8 and the hidden variablg is not close to either. Angelidis’ advice that
we choose am* close tou simply dodges the question. In effect, Angelidis is only considering
experiments wherg is close to one of the two polarizer settings. This information is not sufficient
to tell us what proportion of coincidences we should expect if the polarizers aresandi3 and
the experiment repeated many times.

Perhaps, though, Angelidis could augment his theory soghaivaysis close to one of the
two polarizer settings. Should Angelidis accept the postulate the value of the hidden variable
always close to the angle of one of the two polarizers, then his theory would both ascribe a
probability to a coincidence count and, sing#,(«,B) approaches arbitrarily close to
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p°F(a,B), this probability can be made arbitrarily close to the probabilities ascribed by QF. The
trouble with this proposal is that it straightforwardly violates the postulates of locality. In particu-
lar, it violates(L3), which effectively forbids that the angle of polarization of the two back to back
photons be a function of the settings of the polarizers themselves.

V. CONCLUSION

The conclusion of this paper is clear: Angelidis has failed to provide us with a theory which
is both local and which makes the same predictions as the standard quantum formalism. As such,
Angelidis’ theory simply leaves Bell’'s theorems untouched and the prospects for a local extension
of the quantum formalism look as slim as ever.
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