
promoting access to White Rose research papers

White Rose Research Online

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Neural Networks.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/5235/

Published paper
de Kamps, M., Baier, V., Drever, J., Dietz, M., Mosenlechner, L. and van der
Velde, F. (2008) The state of MIIND. Neural Networks, 21 (8). pp. 1164-1181.
http://dx.doi.org/10.1016/j.neunet.2008.07.006

eprints@whiterose.ac.uk

http://dx.doi.org/10.1016/j.neunet.2008.07.006

The state of MIIND

Marc de Kamps 1

Biosystems Group, School of Computing, University of Leeds, LS29JT Leeds,
United Kingdom

Volker Baier 2

Neuro-Cognitive Psychology, Ludwig-Maximilians Universität München,
Leopoldstrasse 13, München, Germany

Johannes Drever

Robotics and Embedded Systems, Institut für Informatik, Technische Universität
München, Boltzmannstrasse 3, D-85748 Garching bei München, Germany

Melanie Dietz

Robotics and Embedded Systems, Institut für Informatik, Technische Universität
München, Boltzmannstrasse 3, D-85748 Garching bei München, Germany

Lorenz Mösenlechner

Image Understanding & Knowledge-Based Systems, Institut für Informatik,
Technische Universität München, Boltzmannstrasse 3, D-85748 Garching bei

München, Germany

Frank van der Velde

Leiden Institute for Brain and Cognition, Cognitive Psychology, Leiden University,
Wassenaarseweg 52 2333 AK Leiden, The Netherlands

Abstract

MIIND (Multiple Interacting Instantiations of Neural Dynamics) is a highly mod-
ular multi-level C++ framework, that aims to shorten the development time for
models in Cognitive Neuroscience (CNS). It offers reusable code modules (libraries
of classes and functions) aimed at solving problems that occur repeatedly in mod-
elling, but tries not to impose a specific modelling philosophy or methodology. At
the lowest level, it offers support for the implementation of sparse networks. For
example, the library SparseImplementationLib supports sparse random networks

Preprint submitted to Elsevier 1 August 2008

and the library LayerMappingLib can be used for sparse regular networks of filter-
like operators. The library DynamicLib, which builds on top of the library Spar-
seImplementationLib, offers a generic framework for simulating network processes.
Presently, several specific network process implementations are provided in MIIND:
Wilson-Cowan and Ornstein Uhlenbeck type, and population density techniques for
leaky-integrate-and-fire neurons driven by Poisson input. A design principle of MI-
IND is to support detailing: the refinement of an originally simple model into a form
where more biological detail is included. Another design principle is extensibility:
the reuse of an existing model in a larger, more extended one. One of the main uses
of MIIND so far has been the instantiation of neural models of visual attention.
Recently, we have added a library for implementing biologically inspired models of
artificial vision, such as HMAX and recent successors. In the long run we hope to be
able to apply suitably adapted neuronal mechanisms of attention to these artificial
models.

1 The Philosophy of MIIND

1.1 The need for interoperability of models

Looking back on the developments in cognitive neuroscience over the last
decade, the progress of experimental techniques is striking. Functional Mag-
netic Imaging Resonance (fMRI) machines have become commonplace and
many of them are now purely dedicated to cognitive research. Techniques,
such as EEG, PET, MEG and others have also matured and are increasingly
used in conjunction with fMRI. Technological advances have allowed the de-
velopment of novel ways of connecting electronic readout to neurons, leading
to bigger multi-electrode arrays (MEAs) (Nicolelis et al., 2003; Navarro et al.,
2005) or to neuron-on-silico chips (Fromherz, 2003; Schoen & Fromherz, 2007).
This process seems to reinforce itself: the more we know about specific parts
of the brain, the better we can plan the next experiment.

Enormous progress has also been made in the understanding of single neurons
and neuronal systems. Researchers are beginning to explore large-scale mod-
els of biologically detailed networks (e.g., Djurfeldt et al., 2008). Relatively
simple neuronal models now exist that model experimental data accurately,
but which are much simpler than Hodgkin-Huxley type models (Brette & Ger-
stner, 2005). The BlueBrain project (e.g., Markram, 2006) aims to model an
entire cortical column in realistic detail. The effects of synaptic plasticity rules

1 Corresponding author, dekamps@comp.leeds.ac.uk
2 Supported by CoTeSys grant no. 168 (http://www.cotesys.org)

2

can now be investigated in great detail both on the neuronal (e.g., Gerstner &
Kistler, 2002) and the network level (Morrison, Aertsen, & Diesmann, 2007).
But where experimental (cognitive) neuroscience has reached a breakthrough
at the system level, and allows us to observe the global flow of neural activ-
ity in the active brain, computational modelling has yet to follow suit here.
In general, progress in computational neuroscience has not informed models
of high level cognition. In terms of understanding high level cognition, men-
tal illnesses and endowing artefacts with human like intelligence we have not
reached a breakthrough at the system level.

What is the cause for this? Although it is certainly true that means for mod-
elling and theory building are not commensurate with the enormous invest-
ments in experimental equipment, in the opinion of the authors this is not
the main reason. To include a realistic level of detail in models of high level
cognition a lot of work will be necessary, which will involve a large num-
ber of people and expertise from various disciplines. However, in modelling
we seem to have hit something of a complexity wall: most modelling is done
on a project by project basis, in relatively small groups. Typically, the re-
sults of modelling are published, but publishing the implementation of the
model, be it in the form of source code or an executable (or in other forms:
e.g. CORBA/COM objects), is rare, although with the recent arrival of Mod-
elDB (http://senselab.med.yale.edu/modeldb) this may slowly change.
This means that the level of complexity of the model in general will not ex-
ceed that what can be achieved by a small research group (1-5 people) over
a limited period of time (2-5 years). This is not a problem if one believes
that the brain can be understood at a relatively high level of abstraction, and
with relatively simple models, which only need to be scaled up to brain sized
dimensions.

While it is not possible to disprove such an optimistic view, because of our
lack of success in endowing artifacts with human- or animal-like intelligence,
many researchers now adopt the view that we must invest more effort in un-
derstanding the brain and behaviour as a biological system (O’Reilly, 2006;
Webb, 2001). This is a novel development in some disciplines, for example
in Connectionism the need for biological realism used to be de-emphasized or
even opposed. It has proven difficult to disentangle the neuronal level from the
genetic level and the behavioural level from the neuronal level and modelling
any higher level cognitive function involves a large number of brain areas,
which are interconnected in complicated ways. The human brain will turn out
to be extremely difficult to model. Some scientists argue that the way to go
is to build brain- or biologically-inspired technological applications (Brooks,
1991; Pfeifer & Scheier, 1999; Webb, 2001), and learn from this how the brain
functions. This is a valid approach, and will undoubtedly yield useful insights,
but modelling the brain is also crucial to obtain insight into the causes of men-
tal disorders and to improve existing human-brain interfaces systematically.

3

In this light, the complexity barrier imposed by small research groups and
the limited amounts of time are a disaster. In order to make progress, it is
necessary to construct models that can be reused by other research groups,
which would reduce the enormous level of duplication which is currently going
on. Ideally, models should be extensible in two directions: it should be possible
to ’detail’ them, replacing a certain coarse level of modelling by a finer grained
one, and it should be possible to build complex models, using the current ones
as building blocks. Not only would such a reuse of modelling greatly reduce
duplication of programming efforts and allow the construction of complex
models by small research groups, it would also greatly help in the transfer of
expertise between the different disciplines involved in brain science.

Technically, it is extremely challenging to create such models, and the question
is, what happens when they are there. Who maintains them? Who validates
them? Who evaluates their usefulness? It is clear that coordination of some
kind is necessary and it seems that with the creation of the International
Neuroinformatics Coordinating Facility (INCF; http://www.incf.org), this
is potentially forthcoming. However, even a coordination agency needs some-
thing to start with and it is clear that the first step must come from re-
searchers in the field, since the problems sketched here surface most clearly
when one tries to extend models and tries to incorporate work from other re-
searchers. MIIND is an example of such efforts: starting as a relatively simple
Artificial Neural Network (ANN) model for object-based attention (van der
Velde & de Kamps, 2001), which was subsequently expanded into the Closed
Loop Attention Model (CLAM) (van der Velde, de Kamps, & van der Voort
van der Kleij, 2004), we extended it to include a neural blackboard architec-
ture (van der Velde & de Kamps, 2006). We experienced first, that some of
the programming work we had to do was quite repetitive and second, that
we could not easily include our earlier work into the later, more sophisticated
models. We also found that in these later models, which were characterised
by a much more complex spatial organization, it was sometimes necessary
to include more realistic descriptions of neuronal dynamics. Furthermore, we
found it necessary to be able to integrate our models with those of others, in
other words to construct models that are interoperable (see (Cannon et al.,
2007) for a recent review of interoperability of neural simulators). For exam-
ple, we are interested to see if the mechanisms described in (van der Velde
& de Kamps, 2001) can be applied to recent models of object recognition in
the ventral stream, such as HMAX and more recent variations (Riesenhuber
& Poggio, 1999; Serre, Wolf, Bileschi, Riesenhuber, & Poggio, 2007). Finally,
we have observed that models of others are often very similar in mathematical
structure (Lanyon & Denham, 2004; Usher & Niebur, 1996; Hamker, 2005),
even when expressing ideas or models quite different from our own.

We call our ideas on interoperability and extensibility of models “The Phi-
losophy of MIIND” (de Kamps & Baier, 2007). They are realized in C++

4

code, but can be considered demonstrators, or realizations of design patterns
(Gamma, Helm, Johnson, & Vlissides, 1994). Some of our ideas are not neces-
sarily related to a C++ implementation and could, from a user’s perspective
also be realized on a GRID architecture.

1.2 The Philosophy of MIIND

The ’Philosophy of MIIND’ is to isolate repetitive code tasks that occur during
modelling as early as possible and to detach the problems that occur as much
as possible from their modelling context. An example is SparseImplementa-
tionLib, which is a library for the representation of sparse random networks.
Although initially created as an implementation for ANNs, it contains no
explicit references to ANNs and is in fact quite useful in any problem that
deals with sparse random networks. The idea is that a library has a limited,
well defined task and that if the functionality of the library increases, it should
be split.

Consider the example of a sparse network representation: most simulators
have dealt with this problem, but their solution is usually not exposed to
users and other developers. This is an opportunity for code reuse which is
often missed. MIIND explicitly aims to expose its low level functionality.
SparseImplementation (section 3) can be used for any problem which in-
volves sparse irregular networks. DynamicLib (section 4.2) is a very generic
solver for systems of equations, not necessarily restricted to neuronal simu-
lations. Even if other developers decide not to adopt MIIND’s implementa-
tion, they may get some ideas from the code. This is a major advance over
algorithms which are published, but whose implementation is not publicly
available.

MIIND’s core functionality is implemented in C++, an object-oriented lan-
guage which is suitable for high performance computing. Its object orientation
is a major advantage over environments such as MATLAB, which rely on a
functional programming paradigm. In our experience data structures in high
level cognitive modelling become complicated and lead to a cumbersome im-
plementation in MATLAB (van der Velde & de Kamps, 2001, 2006). The C++
template mechanism allows a static version of duck-typing (Koenig & Moo,
2005) which does not incur run time overheads. This means that central con-
cepts can be expressed in a very abstract and powerful way that still leads
to efficient code. In the population density methods that MIIND provides,
this is of crucial importance. Also, a framework for equation solving must be
efficient. This has motivated the choice for C++. At the same time the C++
syntax is obscure and complicated. Scripting languages such as Python offer a
significant increase in productivity over C++ for code that is not time critical

5

(estimated to be at least a factor 2, depending on the application (Prechelt,
2000)). At the moment we are equipping MIIND with a Python interface.
LayerMappingLib already has such an interface, and a Python module will be
built automatically when MIIND is compiled. The other libraries will receive
a Python interface soon. MIIND uses ROOT (http://root.cern.ch) for vi-
sualisation. ROOT is Open Source software and is developed by CERN to
process and visualize the data that will come from the LHC project. It offers
scripting in C++ (CINT) and Python (PyRoot).

MIIND is OpenSource, released on a modified BSD license and hosted on
SourceForge (http://miind.sf.net). The only modification with respect to
the original license is that if you use MIIND in the preparation of a scientific
publication, you must cite the ’currently valid reference’, which is listed on
MIIND’s website.

2 An overview of MIIND

Most concepts in MIIND are relatively high level and therefore not dependent
on a particular programming language. Throughout this paper we will illus-
trate the concepts with simple code fragments of the ’Hello World’ type. This
code should be self explanatory, even to people who do not have a background
in C++. Only in section 3 are some aspects of the C++ implementation dis-
cussed in more detail, but in a way that still should make sense to an audience
with a general background in computer science. Throughout the text we will
denote libraries, class names and class methods as shown here.

2.1 Sparse networks

An overview of MIIND can be found in Fig. 1. SparseImplementationLib is
a library which offers generic support for the implementation of sparse ran-
dom networks. Most biological networks are sparse: the number of nodes is
typically large and the resources for the implementation of connections are
typically limited. In the brain, for example, the 1011 nodes would lead to 1022

connections in a fully connected network. In practice, this number is closer to
1015, so that an adjacency matrix representing the connection structure of a
brain would be very sparse indeed. In neural simulations and other biological
applications, the networks are also characterised by irregularity: the forma-
tion of connections may be driven by random processes or the networks may
display little symmetry. Simulations of large networks are often limited by the
amount of memory that is available and the adoption of an implementation
which makes efficient use of memory is crucial to large network simulations.

6

Fig. 1. An overview of the MIIND libraries.

M
IIN

D
R

ep
re

se
nt

at
io

n
of

Sp

ar
se

 N
et

w
or

ksSp
ar

se
Im

pl
em

en
ta

tio
nL

ib

La
ye

rM
ap

pi
ng

Im
pl

em
en

ta
tio

nL
ib

D
yn

am
ic

Li
b

C
on

ne
ct

io
ni

sm
Li

b

St
ru

ct
ne

tL
ib

U
se

s
im

pl
em

en
ta

tio
n

Im
ag

ep
ro

ce
ss

in
gL

ib

Po
pu

lis
tL

ib
U

se
s

im
pl

em
en

ta
tio

n

U
se

s
ne

tw
or

k

H
M

AX
, e

tc

N
et

w
or

ks
 o

f F
ok

ke
r-

P
la

nc
k

ty
pe

po

pu
la

tio
n

eq
s.

U
se

s
co

nc
ep

ts

7

SparseImplementationLib supports the creation of large sparse irregular net-
works with non-trivial connection structures and provides facilities for reading
them from and writing them to disk. Due to the use of C++’s template mech-
anism, SparseImplementationLib is extremely versatile (we elaborate on the
relative merits of this mechanism in section 3) and some of the libraries that
build on top of it (DynamicLib and PopulistLib) are demonstrators of the way
in which it can be extended.

Although biological networks are often irregular, artificial models inspired by
biology may display a high degree of symmetry. This is true, for example,
for the Neocognitron (Fukushima, 1980) and also for more recent models of
the ventral stream for object recognition (e.g. Riesenhuber & Poggio, 1999;
Serre et al., 2007). Often, these networks are hierarchical structures of filters
which display translation invariance. A literal network implementation of such
a filter hierarchy, where the filter operations are implemented by connections,
would require a large number of connections. Since the networks are typically
feedforward, there are alternative implementations that are more efficient. The
effect of a filter based network may be realized by storing a single filter and
by applying that filter repeatedly to all locations in the previous layer. This
reduces the large number of connections required to implement the whole
parallel feature bank structure to a small set of filters that can be applied in
rapid succession (or even in parallel given suitable parallelisation). This is the
idea behind LayerMappingLib.

2.2 Simulating large systems of coupled equations

DynamicLib, the generic simulator, builds on top of SparseImplementa-
tionLib. It models large systems of coupled equations as networks, which is
best illustrated by an example: suppose this network is modelled by Wilson-
Cowan (Wilson & Cowan, 1972) equations:

τ
dE

dt
= −E + f(αE − βI + η) (1)

τ
dI

dt
= −I + f(γE − δI + η),

where E and I are the population firing rates of populations E and I respec-
tively, η is an external input current contribution, α, β, γ and δ connectivity
parameters and f(x) is a so-called sigmoid function, the exact form of which
can vary according to the model under consideration. τ is the population time
constant, not to be confused with the membrane time constant of individual
neurons. In the original work of Wilson and Cowan (1972), τ emerged as a
free parameter, because they used a technique called time coarse graining.

8

Together with ANNs, Wilson-Cowan equations are one of the most widely used
methods for cognitive neuroscience modelling (e.g., van der Velde & de Kamps,
2001; Lanyon & Denham, 2004; Usher & Niebur, 1996). Solving systems like
Eq. 2 is not particularly difficult, but can be time consuming, especially if the
system has to be set up from scratch.

DynamicLib offers facilities to set up the system of equations as a DynamicNetwork.
For each population, a node is added, and for each connectivity parameter a
corresponding edge. Each node is able to calculate the instantaneous weighted
contribution from all other nodes. Node E, for example, is able to establish
that its instantaneous external input is αE(t)− βI(t) + η.

Each node is equipped with an Algorithm, which is responsible for main-
taining and evolving the node’s state. Several of these algorithms are already
provided with MIIND. The algorithm WilsonCowanAlgorithm, for example,
is able to solve equations of the type of Eq. 2 numerically. The user never
needs to call numerical software directly, but simply configures the node with
the appropriate algorithm.

Simulating a network is extremely simple. It entails the following steps:

• Create a DynamicNetwork.
• Create a SimulationRunParameter. Here parameters, such as the duration

of the simulation, and the name of the file to which the simulation results
should be written are specified.

• Create DynamicNodes, configure them with a WilsonCowanAlgorithm and
add them to the network.

• Connect the DynamicNodes in the network, by specifying the connectivity
parameters (efficacies).

• Configure the DynamicNetwork with the SimulationParameter.
• Evolve the DynamicNetwork. The network will drive the simulation automat-

ically, and write the simulation results into a file. They can be analyzed at a
later time, using the ROOT visualization package http://root.cern.ch,
or any alternative.

The programming burden for creating and solving systems of Wilson-Cowan
equations is greatly reduced in this way: there is no need to write or call
numerical integrators, so the modeller can focus on setting up the network
structure. The simulation is run by the network and the results can be written
in a format that allows high quality visualization (see section 4.2). In (van der
Velde & de Kamps, 2006) we discussed a large network that we were able to
develop in a matter of days (Fig. 6).

As a demonstration of the versatility of DynamicLib, we follow some of the
modelling work done by Amit and Brunel (1997b, 1997a). They used a clever
method to describe the steady state activity of large populations of leaky-

9

integrate-and-fire (LIF) neurons and applied them to a neuronal model of
working memory. We will demonstrate how a relatively simple extension of the
WilsonCowanAlgorithm, the OrnsteinUhlenbeckAlgorithm (or OUAlgorithm
for short) can quickly replicate and extend the networks studied by Amit and
Brunel (1997b).

DynamicLib is not restricted to sets of Wilson-Cowan equations. Several other
algorithms have been provided, including so-called population density algo-
rithms (de Kamps, 2003, 2006). These techniques have been developed to
model the response of large populations of spiking neurons (Knight, Manin,
& Sirovich, 1996; Omurtag, Knight, & Sirovich, 2000; Nykamp & Tranchina,
2000; Haskell, Nykamp, & Tranchina, 2001; Apfaltrer, Ly, & Tranchina, 2006;
Muller, Buesing, Schemmel, & Meier, 2007). They are akin to coupled systems
of Fokker-Planck equations and describe approximately the same dynamics al-
though they are more generally applicable. They describe transient neuronal
dynamics much more accurately than Wilson-Cowan equations, at the expense
of being computationally intensive and more difficult to implement. Since the
implementation is provided with MIIND, setting up such a system of equations
is about as simple as setting up a network as described above and involves
largely the same steps. PopulistLib provides these algorithms (see section 5).

There is an important link between OUAlgorithm and population density tech-
niques in that the former describes steady states of the latter. OUAlgorithm
takes much less computing time than population density techniques. So, one
may explore a network and find suitable network parameters by using OUAlgorithm.
Once the network is fixed in a structure that gives the desired steady state
activity, a single programming statement exchanges OUAlgorithm for a pop-
ulation density algorithm. The same simulation can now be run, but with a
much more realistic description of transient neuronal dynamics (and at the
expense of much more computing time). Modelling a network and modelling
the neuronal dynamics in the network can be done completely independently
from each other. It is even possible to create heterogeneous networks, where
a large part of the network is described by a simple efficient algorithm and a
subset of the simulations are performed in much greater detail.

Algorithms in principle could be constructed from other simulators, for ex-
ample, compartmental models or point model neurons, as simulated by NEU-
RON, GENESIS and NEST (see (Brette et al., 2007) for a recent overview
of publicly available spiking neuron simulators). DynamicLib is a framework,
because it allows the insertion of new Algorithms and visualization methods.
We believe that this framework demonstrates one possible design pattern for
models that are interoperable. Since this is an important topic, we will come
back to it in the discussion.

StructNetLib offers support for endowing networks with a spatial structure.

10

In some neuroscience models the spatial structure of the network is just as
important as the connection structure and in some cases the network is even
defined in terms of its spatial structure, for example when connections are
restricted to certain distances or when neurons have a receptive field which is
spatially restricted.

ConnectionismLib contains a few basic algorithms, such as Hebbian training
and back-propagation of errors, which can be useful in the construction of
network models, but this part of MIIND is not well developed. Those who are
looking for libraries which offer a large variation of connectionist algorithms
are explicitly referred elsewhere (e.g., O’Reilly & Rudy, 2001). The reason why
we have included this library in the public release is that it provides a nice
illustration of how SparseImplementationLib can be used to support sparse
neural networks. Also, some of our earlier models (van der Velde & de Kamps,
2001) were created with this code and it is possible to replicate them.

3 SparseImplementationLib

3.1 The sparse network memory model

Any network is a collection of nodes connected by edges. Typically, there are
numerical values associated with the edges, and often a computer implemen-
tation consists of a vector for storing the values of the nodes and a so-called
adjacency matrix (or weight matrix) for storing the values of the edges (or
weights). This is a very general representation for networks, which allows fast
access to both the edge values and the node values, and is easy to program.
This representation is quite wasteful, however, when the network is sparse, i.e.
when most of the entries in the weight matrix are zero. Biological networks
are typically large and sparse (since the connections must be physically im-
plemented) and realistic simulations, relying on such a network representation
would quickly run out of memory.

Biological networks are usually irregular as well. Symmetries, such as trans-
lation or rotation invariance which could lead to clever representations of the
networks are usually realized only approximately in biological networks and
often there is no other option than to explicitly represent each edge. But non-
existing connections need not be represented! The key idea for an efficient
representation of an irregular sparse network is illustrated in Fig. 2.

Each node has the responsibility for representing its numerical value (or activa-
tion). On top of that, the node maintains a list of connections. Each connection
is a pointer-value pair. The pointer is a reference to a node which is connected

11

w1 w2 w3

* * *

.....

.....

w1w2
w3 *

*
*

w
1

w
2

w
3

*
*

*

w1 w2 w3

* * *

w1 w2 w3

* * *

w1w2
w3

*
*

*

w1 w2 w3

* * *

Fig. 2. A C++ data structure for representing sparse networks. Each node contains a
list. The list contains pointer-weight pairs. The pointer points to a node with which
this one is connected and the weight represents the strength of the connection. A
collection of such nodes represents a network. Reprinted with permission from (de
Kamps & Baier, 2007).

to this node, its predecessor 3 ; the value is the numerical value of the edge
(weight) connecting the predecessor node to this one. So a node keeps a list of
all predecessor nodes (and weights) and is thereby responsible for maintaining
a list of which nodes are connected to it. It is clear that a collection of such
nodes form an implicit network representation. It is an implicit network repre-
sentation because there is no information about the network associated with
the nodes; information on a network must therefore be obtained by visiting
each node, which may be impractical.

An explicit network representation entails the grouping of nodes that make
up a network in a common class. This has two advantages: first, this makes
it possible to query the network at its properties (how many neurons? how
many input neurons? etc.). Second, it disambiguates the concept of a network
(a single node on its own might belong to two networks, in principle). Also,
it allows the definition of the notion of consistency of a network (if a node
contains a reference to a predecessor node that is not in the network, the
network is not consistent).

So, networks may be represented by lists of nodes, where each node itself
maintains a list of its predecessors and numerical values (weights) associated
with each predecessor. Below, we will discuss a C++ implementation of these

3 This terminology originates from the ANN past of SparseImplementationLib,
where input neurons are really predecessors, the terminology is arbitrary, however
and we could have equally called them successor nodes

12

ideas.

3.2 A C++ implementation - Basic concepts

In this section we discuss some details of the C++ implementation. An ab-
stract class, AbstractSparseNode, implements the central concept of a node
that is aware of its neighbouring nodes in the network. An AbstractSparseNode

stores a numerical value, whose type is determined by a template argument
(usually a double). This value can be interpreted as the nodes activation value.
It can be set and read by GetValue() and SetValue() respectively. Furthermore,
an AbstractNode maintains a list of so-called Connections. A Connection

consists of a pair of a pointer to another AbstractNode and a weight value.
So a single Connection represents an edge in the network. The PushBackCon-
nection() allows new Connections to be added to the list of Connections that
each AbstractSparseNode maintains internally. The InnerProduct() method
computes the scalar product of the input contributions to the node. Normally,
this amounts to the standard weighted sum of the activities at its input: if a
node j has other nodes i, i = 0, .., n − 1 as input (where n is the number of
inputs), it can calculate:

ai =
∑

wijaj, (2)

where ai is the activity of node i and wij is the weight from edge j → i.

Because each AbstractSparseNode has a pointer to each predecessor, it can
retrieve its predecessor’s activity and weight it appropriately. The weight is
often a floating point value, but since the type of the weight is a template
argument, more complicated types can be used. In section 4.3, we will give an
example of a network, where links are determined by two numbers, instead of
one. Clearly, the notion of a weighted sum of inputs, the result of InnerProd-
uct() must then be redefined. The fact that both the types of the activation
value of the nodes and the weights of the network can be parameterised by
specific choices for the template argument, contributes considerably to the
extensibility of SparseImplementationLib.

3.2.1 SparseNode

A SparseNode derives from AbstractSparseNode. SparseNode is a concrete
data type and can also maintain a reference to a squashing function. Such
nodes are able to calculate

ai = f(
∑

wijaj),

where f is the squashing function, usually a sigmoid (predefined sigmoids come
with MIIND, so the user merely has to configure the node). Many users will

13

// Example code f o r connec t i n g nodes to each o t h e r .
// I l l u s t r a t i o n purpose s on l y ! Don ’ t code l i k e t h i s !
// Use Sparse Imp lementa t ion .

D SparseNode node 1 , node 2 , node 3 ;

// s e t I d s
node 1 . SetId (NodeId (1)) ;
node 2 . SetId (NodeId (2)) ;
node 3 . SetId (NodeId (3)) ;

// c r e a t e two connec t i on s : 2−>1 and 3−>1
pair<D SparseNode ∗ ,double> connect ion 12 (&node 2 , 2 . 0) ;

pair<D SparseNode ∗ ,double> connect ion 13 (&node 3 , −2 .0) ;

// add the Connect ions
node 1 . PushBackConnection (connect ion 12) ;
node 1 . PushBackConnection (connect ion 13) ;

// Se t a c t i v a t i o n in Node 2 and 3
node 2 . SetValue (1 . 0) ;
node 3 . SetValue (1 . 0) ;

i f (node 1 . InnerProduct () != 0)
// t h i s would be an e r r o r

return fa l se ;

// We can g i v e a node a s qua sh in g f un c t i o n :
Sigmoid sigmoid ;
node 1 . ExchangeSquashingFunction(&sigmoid) ;
return true ;

Fig. 3. Code that demonstrates the creation and linking of nodes. Although this rep-
resents a network implicitly, users are recommended to use SparseImplementation
instead.

recognize that everything now is in place to represent ANNs. Below we will
give some example code for creating a small neural network. Indeed, SparseIm-
plementationLib was originally developed with ANNs in mind. The squashing
function is the only explicit reference to the classnameSparseNode’s ANN
past. We will show in applications of DynamicLib, that very generic network
processes can be modelled. In Fig. 3 we give example code for the creation of
a network.

The concept of an AbstractSparseNode generalizes well. We will present an
example in section 4.2. C++’s template mechanism has been rightly criticised
as obscure and cumbersome. It provides a static form of duck-typing (Koenig
& Moo, 2005) and indeed dynamic versions of duck-typing, such as imple-
mented in Python, are much more transparent to the user. It is difficult to
see, however, how the concept of an AbstractSparseNode can be implemented
in e.g. Python whilst retaining its efficiency. Consider, for example, the com-
putation of the inner product that AbstractSparseNode provides. The strong
typing maintained by the template mechanism ensures that at compile time
the operator+() and operator*() versions which are necessary to compute
the inner product are determined. This allows them to be inlined, eliminating
the overhead of a function call, which will be made for every weight that is
used to compute the inner product. A similar construct in Python will be
reasonably efficient for built-in types, but will have to perform a function call
for every user-defined type weight. Due to the dynamic resolution of function
arguments in Python, it is hard to see how this can be done efficiently. Since

14

the calculation of inner products can be a bottleneck in scientific computa-
tion, we decided that AbstractSparseNode is a class for which this efficiency
argument can not be ignored.

3.2.2 SparseImplementation and Architecture

As the code shows, using the nodes is straightforward. We show it, because it
gives insight in how the code can be used and extended. These nodes consti-
tute a very simple neural network. There are several reasons not to code like
this, however, (unless one wants to develop a novel implementation). In the
first place, this network does not have an explicit representation: as argued
above, it is a collection of nodes that implicitly represent a network. The class
SparseImplementation is an explicit representation of a network: one can
ask it, how many nodes there are, or to write itself to disk. The second reason
to use SparseImplementation is that it isolates the user from the pointer
representations at the node level. Copying a SparseImplementation is safe:
all internal pointer values are correctly updated without the user having to
keep track of the details. Finally, building a large network in the way shown
in Fig. 3 can be laborious. In particular if the networks have a complicated
structure, one may want to automate aspects of its creation. The way this is
done, is to create an Architecture, which is a mathematical description of a
network. SparseImplementation accepts an Architecture as a constructor
argument.

An Architecture is intended as a mathematical shorthand for a network’s
architecture. For example if a network is fully connected, it suffices to specify
the number of nodes. If a network is a fully connected feedforward network,
it suffices to give the number of nodes in each layer. In the former case an
Architecture must be created, in the latter case a LayeredArchitecture.
Sometimes Architectures are not sufficient to characterise the network and
a list of connections must be provided. Some example code can be found at
http://miind.sf.net/examples nn 2008.

3.3 A C++ implementation - Advanced concepts

3.3.1 Navigation through the network

In many cases the need for users to directly access node values or weight val-
ues can be reduced. In connectionist networks, users can read in and read
out patterns, whereas a training algorithm determines the weight settings. In
DynamicLib, users create the network using suitable class methods and the
visualization of activation values in the network is done by so-called Handlers.
Wherever possible we try to avoid the need for direct access to weights and

15

activation values in the network. Sometimes, however, this can not be avoided:
somebody who writes a training algorithm for connectionist networks, for ex-
ample, needs direct and efficient access to the weights and activation values.

A SparseImplementation provides iterators that give direct access to nodes.
The nodes themselves provide iterators to their connection list. Because iter-
ators are a relatively advanced C++ concept, we give an example of access on
the website: http://miind.sf.net/examples nn 2008, for those who want
to get a feeling for how to use them in a SparseImplementation.

3.3.2 Reversing the network

Usually, the concept that each node maintains a list of its predecessors is suffi-
cient for an efficient network representation. However, SparseImplementation
also supports connections to successors rather than predecessors. If a node sim-
ulates a spiking neuron, for example, the spike must be delivered to successor
neurons rather than predecessors. This difference is semantic, however: the key
idea of SparseImplementationLib is that each node maintains a list of nodes
to which it is connected and whether this connection denotes a predecessor or
a successor relationship is immaterial.

There are situations, however, where a network in normal circumstances needs
to know about its predecessors only, but in special circumstances also about
its successors. Backpropagation is such a situation. The backpropagation al-
gorithm requires information transfer in the network in two directions: during
normal operation information flows from input to output, but during training
information must flow back from output to input!

How does one deal with this? At the level of a SparseImplementation it is pos-
sible to establish which node is the successor of which other node, given the fact
that all predecessor relations are defined already. It would then be possible to
insert into each node a list of successors, complimentary to the already existing
list of predecessors. ReversibleSparseNode is derived from SparseNode and
has facilities to maintain this extra list. Hence, if a SparseImplementation is
instantiated with ReversibleSparseNodes, rather than normal SparseNodes,
SparseImplementation is able to insert the successor relations into a node,
on top of the already existing predecessor relations. Information can flow in
two directions in such a network.

One aspect of SparseImplementation is that the architecture must be known
in advance. We found this somewhat inflexible in some cases, and in Dynam-
icLib, we introduce DynamicImplementation which allows adding nodes and
connections on the fly. We will provide an example of this in section 4.2.

16

w1 w2 w3

* * *

w1w2w3

w
1

w
2

w
3

*
*

*

w
1

w
2

w
3

*
*

*

w
1

w
2

w
3

*
*

*
w

1
w

2
w

3

*
*

*

w1 w2 w3

* * *

Fig. 4. A single DynamicNode is derived from a SparseNode. It has an Abstrac-
tAlgorithm (oval), which operates on a NodeState (rectangle). When prompted by
the simulation loop, the AbstractReportHandler sends the current NodeState to
a central file. DynamicNodes are almost autonomous. The central simulation loop
determines which Node is in line to evolve its NodeState over a short time step, but
the Nodes themselves collect input from other Nodes and deliver this to their own
Algorithms which evolve the Node’s NodeState. This setup is easy to parallelise.
Reprinted with permission from (de Kamps & Baier, 2007).

4 DynamicLib

4.1 Introduction

DynamicNodes derive from AbstractSparseNodes. They represent a significant
extension: not only can they query other nodes for their activities, they also
contain a reference to an AbstractAlgorithm, which in turn maintains a
NodeState. The key idea is that DynamicNodes can evolve their NodeState by
requesting their Algorithms to do so: DynamicNode has an Evolve() method,
which calls its Algorithms Evolve() method. The NodeState takes over the
role that the activation value had in SparseNode. The NodeState describes
the state of the node at a certain time t and the Algorithm’s Evolve() method
evolves that node’s state over a time ∆t, which is usually small. DynamicNodes,
like AbstractSparseNodes maintain a list of nodes that connect to them with
a weight for every connection. At every time t, they are able to evaluate the
instantaneous contribution of other nodes to itself and that input is passed to
the node’s Algorithm as a parameter.

At the highest level DynamicNetwork’s Evolve() method initiates a loop over

17

all nodes, the simulation loop, in which it requests that every DynamicNode

evolve itself over a short period of time. The DynamicNetwork does this re-
peatedly and in such a way a simulation of the network dynamics emerges.
A DynamicNode is also configured with a ReportHandler. At fixed times, the
simulation loop queries the DynamicNodes for a Report. The ReportHandler

of the DynamicNode delivers the Report and the Reports are written to disk
so that a record of the simulation is produced. Also, the simulation loop main-
tains a log file to indicate how far the simulation has progressed and to keep a
record of exceptional conditions that occurred during simulation. In Fig. 4 we
show a graphical representation of the classes involved in DynamicNetwork. In
the next section we will present a Wilson-Cowan equation model as a concrete
example of the abstract concepts described in this section.

4.2 Modelling Wilson-Cowan equations

Consider a network which consists of two populations, one of which is described
by Eq. 2

τ
dE

dt
= −E + f(αE + εν), (3)

and one of which simply maintains a fixed output rate and serves as an external
population to the network.

In Fig. 5 we show how such a network is configured. First, the WilsonCowanAlgorithms
is defined and configured with the appropriate WilsonCowanParameter pa-
rameter, which defines the sigmoid parameters. A network also needs input:
therefore a RateAlgorithm is created, an algorithm whose only action is to
set the NodeState of the DynamicNode to which it belongs to a fixed rate
(the NodeState consist of a single floating point value in this case). The
nodes are then created in the DynamicNetwork, with their own copy of the
WilsonCowanAlgorithm (or RateAlgorithm). A user receives a NodeId as a
reference to DynamicNode that was just created in the DynamicNetwork. These
NodeIds can then be used to define Connections in the network. After the
definition of the DynamicNetwork, one only has to Configure it and to Evolve
it.

In this code a standard sigmoid is used: a function of the form:

f(x) =
fmax

1 + e−βx
,

18

// d e f i n e a D Network , a network whose we i g h t s are d ou b l e s
D DynamicNetwork network ;

Time tau = PARAMETERNEURON. tau ;
Rate rate max = 100 . 0 ;
double no i s e = 1 . 0 ;

// d e f i n e some e f f i c a c y
Ef f i c a cy ep s i l o n = 0 . 1 ;

// d e f i n e some inpu t r a t e
Rate nu = 10 ;

// Def ine a node w i th a f i x e d ou tpu t r a t e
D RateAlgorithm r a t e a l g (nu) ;
NodeId i d r a t e = network . AddNode(r a t e a l g ,EXCITATORY) ;

// Def ine t h e r e c e i v i n g node
WilsonCowanParameter par s igmoid (tau , rate max , no i s e) ;

WilsonCowanAlgorithm algor i thm exc (par s igmoid) ;
NodeId id = network . AddNode(a lgor i thm exc ,EXCITATORY) ;

// connec t t h e two nodes
network . MakeFirstInputOfSecond (i d r a t e , id , e p s i l o n) ;

// d e f i n e a hand l e r to s t o r e t h e s imu l a t i o n r e s u l t s
RootReportHandler

handler
(

” t e s t / w i l sonre sponse . root ” , // s imu l a t i o n r e s u l t s
false , // do not d i s p l a y on sc reen
true // w r i t e i n t o f i l e

) ;

SimulationRunParameter
par run
(

handler , // the hand l e r o b j e c t
1000000 , // maximum number o f i t e r a t i o n s
0 , // s t a r t t ime o f s imu l a t i o n
0 . 5 , // end t ime o f s imu l a t i o n
1e−4, // r e p o r t t ime
1e−4, // update t ime
1e−5, // network s t e p t ime
” t e s t / w i l sonre sponse . l og ” // l o g f i l e name

) ;

bool b con f i gu r e = network . Conf igureS imulat ion (par run) ;

bool b evo lve = network . Evolve () ;

Fig. 5. Example of setting up a Wilson-Cowan network, consisting of one population
and an external current.

where fmax is the maximum response of the node and β is a noise parameter. In
the code of Fig. 5 it can be seen how these parameters are set. The procedure
follows closely the steps outlined in section 2.2. There is no need to call or
define numerical integrators from the user’s point of view.

Setting up large networks is a trivial exercise. It just comes down to using
AddNode and MakeFirstInputOfSecond repeatedly. A very large network which
was used to model a neuronal architecture for compositional representations
(van der Velde & de Kamps, 2006) is shown in Fig. 6.

4.3 Modelling steady states of spiking neurons: dyadic connections

Wilson-Cowan equations are perhaps the most widely used modelling tech-
nique in large-scale network modelling. It has been shown that Wilson-Cowan

19

John

john_exc

Bill

bill_exc

Mary

mary_exc

loves

love_exc

sees

sees_exc

LimAssemblyinput_1

LimAssemblyinput_4

LimAssemblyinput_5

LimAssemblyinput_2

LimAssemblyinput_3

LimAssemblyinput_7

LimAssemblyinput_8

LimAssemblyinput_9

LimAssemblyinput_10

LimAssemblyinput_11

I_center1

LimAssemblyhub_1

LimAssemblyhub_2

LimAssemblyhub_3

LimAssemblyhub_4

LimAssemblyhub_5 LimAssemblyhub_6

Gate_e1_1

Gate_i1_1

Gate_e1_2

Gate_i1_2

Gate_e2_3

Gate_i2_3

LimAssemblyagent_1

Gate_e2_1

Gate_i2_1

Gate_e1_34

Gate_i1_34

Gate_e1_35

Gate_i1_35

Gate_e1_36

Gate_i1_36

Gate_e1_37

Gate_i1_37

Gate_e1_38

Gate_i1_38

LimAssemblytheme_1

Gate_e2_2

Gate_i2_2

Gate_e2_64

Gate_i2_64

Gate_e2_70

Gate_i2_70

Gate_e2_76

Gate_i2_76

Gate_e2_82

Gate_i2_82

Gate_e2_88

Gate_i2_88

Gate_e1_3

Gate_i1_3

Gate_ifwd_1

Gate_ibwd_1

Gate_ifwd_2

Gate_ibwd_2

Gate_ifwd_3

Gate_ibwd_3

Gate_e1_4

Gate_i1_4

Gate_e1_5

Gate_i1_5

Gate_e2_6

Gate_i2_6

LimAssemblyagent_2

Gate_e2_4

Gate_i2_4

Gate_e1_39

Gate_i1_39

Gate_e1_40

Gate_i1_40

Gate_e1_41

Gate_i1_41

Gate_e1_42

Gate_i1_42

Gate_e1_43

Gate_i1_43

LimAssemblytheme_2

Gate_e2_5

Gate_i2_5

Gate_e2_65

Gate_i2_65

Gate_e2_71

Gate_i2_71

Gate_e2_77

Gate_i2_77

Gate_e2_83

Gate_i2_83

Gate_e2_89

Gate_i2_89

Gate_e1_6

Gate_i1_6

Gate_ifwd_4

Gate_ibwd_4

Gate_ifwd_5

Gate_ibwd_5

Gate_ifwd_6

Gate_ibwd_6

Gate_e1_7

Gate_i1_7

Gate_e1_8

Gate_i1_8

Gate_e2_9

Gate_i2_9

LimAssemblyagent_3

Gate_e2_7

Gate_i2_7

Gate_e1_44

Gate_i1_44

Gate_e1_45

Gate_i1_45

Gate_e1_46

Gate_i1_46

Gate_e1_47

Gate_i1_47

Gate_e1_48

Gate_i1_48

LimAssemblytheme_3

Gate_e2_8

Gate_i2_8

Gate_e2_66

Gate_i2_66

Gate_e2_72

Gate_i2_72

Gate_e2_78

Gate_i2_78

Gate_e2_84

Gate_i2_84

Gate_e2_90

Gate_i2_90

Gate_e1_9

Gate_i1_9

Gate_ifwd_7

Gate_ibwd_7

Gate_ifwd_8

Gate_ibwd_8

Gate_ifwd_9

Gate_ibwd_9

Gate_e1_10

Gate_i1_10

Gate_e1_11

Gate_i1_11

Gate_e2_12

Gate_i2_12

LimAssemblyagent_4

Gate_e2_10

Gate_i2_10

Gate_e1_49

Gate_i1_49

Gate_e1_50

Gate_i1_50

Gate_e1_51

Gate_i1_51

Gate_e1_52

Gate_i1_52

Gate_e1_53

Gate_i1_53

LimAssemblytheme_4

Gate_e2_11

Gate_i2_11

Gate_e2_67

Gate_i2_67

Gate_e2_73

Gate_i2_73

Gate_e2_79

Gate_i2_79

Gate_e2_85

Gate_i2_85

Gate_e2_91

Gate_i2_91

Gate_e1_12

Gate_i1_12

Gate_ifwd_10

Gate_ibwd_10

Gate_ifwd_11

Gate_ibwd_11

Gate_ifwd_12

Gate_ibwd_12

Gate_e1_13

Gate_i1_13

Gate_e1_14

Gate_i1_14

Gate_e2_15

Gate_i2_15

LimAssemblyagent_5

Gate_e2_13

Gate_i2_13

Gate_e1_54

Gate_i1_54

Gate_e1_55

Gate_i1_55

Gate_e1_56

Gate_i1_56

Gate_e1_57

Gate_i1_57

Gate_e1_58

Gate_i1_58

LimAssemblytheme_5

Gate_e2_14

Gate_i2_14

Gate_e2_68

Gate_i2_68

Gate_e2_74

Gate_i2_74

Gate_e2_80

Gate_i2_80

Gate_e2_86

Gate_i2_86

Gate_e2_92

Gate_i2_92

Gate_e1_15

Gate_i1_15

Gate_ifwd_13

Gate_ibwd_13

Gate_ifwd_14

Gate_ibwd_14

Gate_ifwd_15

Gate_ibwd_15

Gate_e1_16

Gate_i1_16

Gate_e1_17

Gate_i1_17

Gate_e2_18

Gate_i2_18

LimAssemblyagent_6

Gate_e2_16

Gate_i2_16

Gate_e1_59

Gate_i1_59

Gate_e1_60

Gate_i1_60

Gate_e1_61

Gate_i1_61

Gate_e1_62

Gate_i1_62

Gate_e1_63

Gate_i1_63

LimAssemblytheme_6

Gate_e2_17

Gate_i2_17

Gate_e2_69

Gate_i2_69

Gate_e2_75

Gate_i2_75

Gate_e2_81

Gate_i2_81

Gate_e2_87

Gate_i2_87

Gate_e2_93

Gate_i2_93

LimAssemblyinput_6

Gate_e1_18

Gate_i1_18

Gate_ifwd_16

Gate_ibwd_16

Gate_ifwd_17

Gate_ibwd_17

Gate_ifwd_18

Gate_ibwd_18

I_center2

LimAssemblyhub_7

LimAssemblyhub_8

LimAssemblyhub_9

LimAssemblyhub_10

LimAssemblyhub_11

Gate_e1_19

Gate_i1_19

Gate_e1_20

Gate_i1_20

Gate_e2_21

Gate_i2_21

LimAssemblyagent_7

Gate_e2_19

Gate_i2_19

Gate_e2_34

Gate_i2_34

Gate_e2_39

Gate_i2_39

Gate_e2_44

Gate_i2_44

Gate_e2_49

Gate_i2_49

Gate_e2_54

Gate_i2_54

Gate_e2_59

Gate_i2_59

LimAssemblytheme_7

Gate_e2_20

Gate_i2_20

Gate_e1_64

Gate_i1_64

Gate_e1_65

Gate_i1_65

Gate_e1_66

Gate_i1_66

Gate_e1_67

Gate_i1_67

Gate_e1_68

Gate_i1_68

Gate_e1_69

Gate_i1_69

Gate_e1_21

Gate_i1_21

Gate_ifwd_19

Gate_ibwd_19

Gate_ifwd_20

Gate_ibwd_20

Gate_ifwd_21

Gate_ibwd_21

Gate_e1_22

Gate_i1_22

Gate_e1_23

Gate_i1_23

Gate_e2_24

Gate_i2_24

LimAssemblyagent_8

Gate_e2_22

Gate_i2_22

Gate_e2_35

Gate_i2_35

Gate_e2_40

Gate_i2_40

Gate_e2_45

Gate_i2_45

Gate_e2_50

Gate_i2_50

Gate_e2_55

Gate_i2_55

Gate_e2_60

Gate_i2_60

LimAssemblytheme_8

Gate_e2_23

Gate_i2_23

Gate_e1_70

Gate_i1_70

Gate_e1_71

Gate_i1_71

Gate_e1_72

Gate_i1_72

Gate_e1_73

Gate_i1_73

Gate_e1_74

Gate_i1_74

Gate_e1_75

Gate_i1_75

Gate_e1_24

Gate_i1_24

Gate_ifwd_22

Gate_ibwd_22

Gate_ifwd_23

Gate_ibwd_23

Gate_ifwd_24

Gate_ibwd_24

Gate_e1_25

Gate_i1_25

Gate_e1_26

Gate_i1_26

Gate_e2_27

Gate_i2_27

LimAssemblyagent_9

Gate_e2_25

Gate_i2_25

Gate_e2_36

Gate_i2_36

Gate_e2_41

Gate_i2_41

Gate_e2_46

Gate_i2_46

Gate_e2_51

Gate_i2_51

Gate_e2_56

Gate_i2_56

Gate_e2_61

Gate_i2_61

LimAssemblytheme_9

Gate_e2_26

Gate_i2_26

Gate_e1_76

Gate_i1_76

Gate_e1_77

Gate_i1_77

Gate_e1_78

Gate_i1_78

Gate_e1_79

Gate_i1_79

Gate_e1_80

Gate_i1_80

Gate_e1_81

Gate_i1_81

Gate_e1_27

Gate_i1_27

Gate_ifwd_25

Gate_ibwd_25

Gate_ifwd_26

Gate_ibwd_26

Gate_ifwd_27

Gate_ibwd_27

Gate_e1_28

Gate_i1_28

Gate_e1_29

Gate_i1_29

Gate_e2_30

Gate_i2_30

LimAssemblyagent_10

Gate_e2_28

Gate_i2_28

Gate_e2_37

Gate_i2_37

Gate_e2_42

Gate_i2_42

Gate_e2_47

Gate_i2_47

Gate_e2_52

Gate_i2_52

Gate_e2_57

Gate_i2_57

Gate_e2_62

Gate_i2_62

LimAssemblytheme_10

Gate_e2_29

Gate_i2_29

Gate_e1_82

Gate_i1_82

Gate_e1_83

Gate_i1_83

Gate_e1_84

Gate_i1_84

Gate_e1_85

Gate_i1_85

Gate_e1_86

Gate_i1_86

Gate_e1_87

Gate_i1_87

Gate_e1_30

Gate_i1_30

Gate_ifwd_28

Gate_ibwd_28

Gate_ifwd_29

Gate_ibwd_29

Gate_ifwd_30

Gate_ibwd_30

Gate_e1_31

Gate_i1_31

Gate_e1_32

Gate_i1_32

Gate_e2_33

Gate_i2_33

LimAssemblyagent_11

Gate_e2_31

Gate_i2_31

Gate_e2_38

Gate_i2_38

Gate_e2_43

Gate_i2_43

Gate_e2_48

Gate_i2_48

Gate_e2_53

Gate_i2_53

Gate_e2_58

Gate_i2_58

Gate_e2_63

Gate_i2_63

LimAssemblytheme_11

Gate_e2_32

Gate_i2_32

Gate_e1_88

Gate_i1_88

Gate_e1_89

Gate_i1_89

Gate_e1_90

Gate_i1_90

Gate_e1_91

Gate_i1_91

Gate_e1_92

Gate_i1_92

Gate_e1_93

Gate_i1_93

Gate_e1_33

Gate_i1_33

Gate_ifwd_31

Gate_ibwd_31

Gate_ifwd_32

Gate_ibwd_32

Gate_ifwd_33

Gate_ibwd_33

InputControl

NounReverseControl

AgentControl

AgentReverseControl

ThemeReverseControl

ThemeControl

Gate_ifwd_34

Gate_ibwd_34

Gate_ifwd_35

Gate_ibwd_35

Gate_ifwd_36

Gate_ibwd_36

Gate_ifwd_37

Gate_ibwd_37

Gate_ifwd_38

Gate_ibwd_38

Gate_ifwd_39

Gate_ibwd_39

Gate_ifwd_40

Gate_ibwd_40

Gate_ifwd_41

Gate_ibwd_41

Gate_ifwd_42

Gate_ibwd_42

Gate_ifwd_43

Gate_ibwd_43

Gate_ifwd_44

Gate_ibwd_44

Gate_ifwd_45

Gate_ibwd_45

Gate_ifwd_46

Gate_ibwd_46

Gate_ifwd_47

Gate_ibwd_47

Gate_ifwd_48

Gate_ibwd_48

Gate_ifwd_49

Gate_ibwd_49

Gate_ifwd_50

Gate_ibwd_50

Gate_ifwd_51

Gate_ibwd_51

Gate_ifwd_52

Gate_ibwd_52

Gate_ifwd_53

Gate_ibwd_53

Gate_ifwd_54

Gate_ibwd_54

Gate_ifwd_55

Gate_ibwd_55

Gate_ifwd_56

Gate_ibwd_56

Gate_ifwd_57

Gate_ibwd_57

Gate_ifwd_58

Gate_ibwd_58

Gate_ifwd_59

Gate_ibwd_59

Gate_ifwd_60

Gate_ibwd_60

Gate_ifwd_61

Gate_ibwd_61

Gate_ifwd_62

Gate_ibwd_62

Gate_ifwd_63

Gate_ibwd_63

Delay_agent

Gate_ifwd_64

Gate_ibwd_64

Gate_ifwd_65

Gate_ibwd_65

Gate_ifwd_66

Gate_ibwd_66

Gate_ifwd_67

Gate_ibwd_67

Gate_ifwd_68

Gate_ibwd_68

Gate_ifwd_69

Gate_ibwd_69

Gate_ifwd_70

Gate_ibwd_70

Gate_ifwd_71

Gate_ibwd_71

Gate_ifwd_72

Gate_ibwd_72

Gate_ifwd_73

Gate_ibwd_73

Gate_ifwd_74

Gate_ibwd_74

Gate_ifwd_75

Gate_ibwd_75

Gate_ifwd_76

Gate_ibwd_76

Gate_ifwd_77

Gate_ibwd_77

Gate_ifwd_78

Gate_ibwd_78

Gate_ifwd_79

Gate_ibwd_79

Gate_ifwd_80

Gate_ibwd_80

Gate_ifwd_81

Gate_ibwd_81

Gate_ifwd_82

Gate_ibwd_82

Gate_ifwd_83

Gate_ibwd_83

Gate_ifwd_84

Gate_ibwd_84

Gate_ifwd_85

Gate_ibwd_85

Gate_ifwd_86

Gate_ibwd_86

Gate_ifwd_87

Gate_ibwd_87

Gate_ifwd_88

Gate_ibwd_88

Gate_ifwd_89

Gate_ibwd_89

Gate_ifwd_90

Gate_ibwd_90

Gate_ifwd_91

Gate_ibwd_91

Gate_ifwd_92

Gate_ibwd_92

Gate_ifwd_93

Gate_ibwd_93

Delay_target

N1

V1

V2

V3

V4

V5

N6
N5

N4

N3

N2

Fig. 6. A large network simulated with DynamicLib.

equations adequately describe the trend in the activity of a group of neu-
rons reasonably well (Gerstner, 1995), but not the transient dynamics 4 . Also,
Wilson-Cowan techniques contain a sigmoid for which the original motivation
(Wilson & Cowan, 1972) is not considered to be valid anymore. Amit and
Brunel (1997b) introduced a modelling technique which describes networks of
spiking (LIF) neurons in terms of their steady state. It is possible to derive
these equations from first principles, under some reasonably plausible assump-
tions about connectivity and firing rates in cortex. So states in these networks
actually describe steady-state activity of networks of spiking LIF neurons as
accurately as direct simulations would.

4 This is due to a procedure called time coarse graining, which was used to reduce
integral equations to the kind of differential equations that are nowadays commonly
referred to as Wilson-Cowan equations

20

As we will show, the response of a neuronal population is not only determined
by the average input, as in ANNs and in Wilson-Cowan equations of the kind
discussed above, but also by the variability of the input. This reflects the fact
that the input is assumed to consist of stochastic spike trains that are assumed
to be Poisson distributed. Clearly, this is a step up in neuronal realism. This
is one reason for demonstrating the solution of these equations with Dynami-
cLib. Another important reason is that it demonstrates the flexibility of Dy-
namicLib in handling connections of any kind: as we will see connections
for these kind of networks are dyadic, a single connection is determined by
two floating point numbers. The first number is the average efficacy from a
neuron in one population to another and the second is the effective number
of connections between the two populations. DynamicLib is able to handle
connections of any type due to C++’s template mechanism. Although this is
an important issue, this is quite technical and we refer the C++ aficionados
to http://miind.sf.net/examples nn 2008.

We will now present the equations used by Amit and Brunel (1997b):

νi = φi(µi, σi), (4)

where:

φi(µi, σi) ≡

τref,i +
√

πτi

∫ θi−µi
σi

Vreset,i−µi
σi

du [1 + erf(u)] eu2


−1

(5)

µi = τi

∑
j

JijNijνj,

σi =
√∑

j

τiJ2
ijNij. (6)

τi, τref,i are the membrane time constant and the absolute refractory period,
respectively, in s, θi and Vreset,i the threshold potential and the reset potential,
respectively, in V, all for neurons in population i. Nij is the effective number
of neurons from population j seen by a neuron in population i and Jij the
average efficacy from a spike in population j on a neuron in population i in V.
These equations form a closed system which can be solved for νi. In practice,
one does this by introducing a pseudo-dynamics:

τi
dνi

dt
= −νi + φ(µi, σi), (7)

and selecting initial values νi(0) (Renart, Brunel, & Wang, 2004; la Camera,
Rauch, Lscher, Senn, & Fusi, 2004; de Kamps, 2005).

For OUAlgorithms it is necessary to introduce a novel inner product concept:
the input rates from other nodes are given by the rates νj. These rates are

21

// Note we now need an OU Network i n s t e a d o f a D Network
OU Network network ;

Po t en t i a l sigma = 2e−3;
Po t en t i a l mu = 20e−3;

Time tau = PARAMETERNEURON. tau ;
Rate nu = mu∗mu/(sigma∗ sigma∗ tau) ;
Rate J = sigma∗ sigma/mu;

OU Connection
con
(

1 ,
J

) ;

// Def ine a node w i th a f i x e d ou tpu t r a t e
OU RateAlgorithm r a t e a l g (nu) ;
NodeId i d r a t e = network . AddNode(r a t e a l g ,EXCITATORY) ;

// Def ine t h e r e c e i v i n g node
OU Algorithm algor i thm exc (PARAMETERNEURON) ;
NodeId id = network . AddNode(a lgor i thm exc ,EXCITATORY) ;

// connec t t h e two nodes
network . MakeFirstInputOfSecond (i d r a t e , id , con) ;

// d e f i n e a hand l e r to s t o r e t h e s imu l a t i o n r e s u l t s
RootReportHandler

handler
(

” t e s t / ouresponse . root ” , // s imu l a t i o n r e s u l t s
false , // do not d i s p l a y on sc reen
true // w r i t e i n t o f i l e

) ;

SimulationRunParameter
par run
(

handler , // the hand l e r o b j e c t
1000000 , // maximum number o f i t e r a t i o n s
0 , // s t a r t t ime o f s imu l a t i o n
0 . 1 , // end t ime o f s imu l a t i o n
1e−4, // r e p o r t t ime
1e−4, // update t ime
1e−5, // network s t e p t ime
” t e s t / ouresponse . l og ” // l o g f i l e name

) ;

bool b con f i gu r e = network . Conf igureS imulat ion (par run) ;

bool b evo lve = network . Evolve () ;

Fig. 7. The code for the simulation of a single population network, described by the
dynamics of 7.

converted by application of Eq. 6 to two-tuples (Nij, Jij)
T and result in another

two-tuple: (µ, σ)T . So the inner product is dyadic.

This example shows that the concept of inner product can deviate from the
standard inner product and that it acquires a specific meaning in terms of the
Algorithm that is used by the DynamicNode. The Algorithm determines the
type of connection that the node needs and this in turn determines what kind
of inner product will be evaluated at the node. The fact that the type of the
connection is a template argument enables MIIND to introduce novel inner
product concepts at any stage.

It is instructive to simulate a network of one population first. The code is
presented in Fig. 7.

There are only minor changes with respect to the Wilson-Cowan simulation

22

of section 4.2:

• Instead of a D DynamicNetwork, an OU DynamicNetwork is used. The conse-
quence of this is that the connections in the network are so-called
OU Connections, which are structs that can hold two floating point num-
bers. Also, the algorithm uses the dyadic inner product of Eq. 6 rather than
the standard inner product of Eq. 2. All these changes are triggered by
the choice for OU DynamicNetwork and are, from the user’s point of view,
automatic.

• Instead of a SigmoidParameter, the OU Algorithm must be configured with
an OUParameter, which determines the properties of the neurons to be sim-
ulated, such as the membrane time constant, the threshold value, etc.

• An OU Connection is created, which is defined by two numbers and this
object is then used in the network’s MakeFirstInputOfSecond method.

The single population receives external input from another one, the ’fixed’
population which maintains a fixed firing rate. Assuming that there is effec-
tively one (N = 1) connection between the two populations, one can choose
J , the efficacy of the connection between the populations and ν, the firing
rate of the ’fixed’ population and one can calculate µ and σ using Eq. 6. From
them, using Eq. 5, the firing rate of the population receiving the input can be
calculated. Alternatively, one can specify µ and σ since they determine ν and
J according to:

J =
σ2

µ
(8)

ν =
µ2

σ2
(9)

This is what was done in the simulation shown in Fig. 8: µ was taken to be 15
mV and σ to be 2 mV and a J and ν that would lead to such µ and σ were then
used as parameters for the simulation. Keeping σ fixed and varying µ gives a
so-called f−I or gain function curve (Ricciardi, 1977; Amit & Tsodyks, 1991).
On the right hand side of Fig. 8 we show a f − I curve, calculated by Eq. 5.
On the left hand side we show simulations of the network for various µ values
and it can be seen that the firing rate of the population indeed asymptotes
towards the corresponding value of the f − I curve.

In Fig. 9 we show a network of two populations: one excitatory and one in-
hibitory, both driven by an external input current. The steady state is given

23

t (s)
0 10 20 30 40 50 60 70 80 90 100

-310×

f
(H

z)

0

2

4

6

8

10

12

14

16

18

20

 (V)µ
12 13 14 15 16 17 18 19 20 21 22

-310×

f
(H

z)

0

2

4

6

8

10

12

14

16

18

20

Fig. 8. The simulation results for a population which receives input with a fixed
ν and J . In the simulations ν and σ where chosen such that σ was held fixed at
2 mV and µ at 15, 16, 17, 18, 19 and 20 mV, respectively. The firing rate of the
population (left) quickly converges to rates given by the f − I curve for the µ and
σ values (right).

by Eq. 4. It is instructive to write these equations out (Amit & Brunel, 1997b):

µe = τe(NEJEEνe −NIJEIνi) (10)

σ2
e = τe(NEJ2

EEνe + NIJ
2
EIνi)

µi = τi(CEJIEνe −NIJIIνi)

σ2
i = τi(NEJ2

IEνe + NIJ
2
IIνi)

νe = φe(µe, σe)

νi = φi(µi, σi)

This shows that this deceptively simple simulation corresponds to the solution
of a complex system of equations. This is even more obvious if the network
contains more than two populations: the equations in (Brunel, 2000), which
describe a network of four populations, are long and complex. If these equa-
tions were coded directly, which would be a tedious job, it would be very
difficult to detect errors in the code. In the DynamicLib the simulation of
such a network would merely entail adding more nodes and connections.

The f − I curve is derived from first principles: it is given by calculating the
average first exit time for an Ornstein-Uhlenbeck process with an absorbing
boundary (the neuron threshold) (Gardiner, 1997; van Kampen, 1997). It has
been shown to give a very good approximation of the firing rate of a large

24

t (s)
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

f
(H

z)

0

1

2

3

4

5

6

7

t (s)
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

f
(H

z)

0

1

2

3

4

5

6

7

Fig. 9. A simulation of a two population network. An excitatory (above) and an
inhibitory (below) population are connected to each other and to themselves and
driven by an external input. The inhibitory population has a smaller population time
constant, so initially network activity is suppressed. Once the excitatory population
kicks in, the network activity quickly converges to a steady state. The qualitative be-
haviour of the network activity is similar to that of a comparable network described
by Wilson and Cowan (1972).

population of spiking LIF neurons when they receive a constant input at high
input rates and small synaptic efficacies. Under these conditions the stochastic
spike train input may be replaced by a Gaussian white noise defined by µ and
σ. Extensive simulations have shown that networks of large LIF populations
indeed settle at the firing rates given by Eq. 5 (Amit & Brunel, 1997a; Brunel,
2000). Applications of Eq. 5 can be found in the description of delay dynamics,
which is believed to be the neuronal substrate of working memory (e.g., Amit
& Brunel, 1997b, 1997a; Brunel, 2000; de Kamps, 2005).

5 PopulistLib: towards networks of spiking neurons.

It is important that no misunderstanding arises about the title of this section:
at present MIIND does not contain simulators for groups of spiking neurons.
There are plenty of packages around that are very suitable for the direct simu-
lation of compartmental model of neurons or networks of leaky-integrate-and-
fire (LIF) neurons (Brette et al., 2007). MIIND does contain algorithms for
population density techniques, however, and they can describe the behaviour

25

of large groups of LIF neurons very accurately: often these techniques deliver
the same information as straightforward simulations of LIF neurons, but much
more efficiently (Omurtag et al., 2000; Nykamp & Tranchina, 2000). Another
reason why these techniques are important is that they can be used together
with standard techniques for analysing dynamical systems. Successful analy-
ses of the phase space portrait of simple systems have been given in (Brunel
& Hakim, 1999; Mattia & Del Giudice, 2002; Sirovich, Omurtag, & Lubliner,
2006). This is an exciting and important development: for direct simulation a
large number of neuronal and network parameters must be chosen. In particu-
lar the network parameters, such as synaptic efficacies, are not well constrained
experimentally and an overwhelming freedom of choice exists in direct sim-
ulation. Knowing the phase space portrait of a circuit reduces the enormous
freedom in the choice of parameters to the choice of a much smaller number of
dynamic regimes. It then becomes much easier to motivate the choice of simu-
lation parameters. A final important reason to consider these techniques is the
fact that they link the individual neuronal level with the network level. It has
been amply demonstrated that groups of spiking LIF neurons are adequately
described by population density techniques (Omurtag et al., 2000; Nykamp
& Tranchina, 2000). So by connecting several populations into networks, it
becomes possible to model large networks of such spiking neurons. We will
give a demonstration in this section of a simple network of this kind. We will
emphasize that from the perspective of the user, the code is almost identical
to that of examples in previous sections.

Population density techniques are partial differential equations, usually Fokker-
Planck equations, or more generally Master equations (Gardiner, 1997; van
Kampen, 1997), which describe the temporal evolution of the distribution of
states in the population (Knight, 1972). Network models can be constructed
by coupling the partial differential equations for each individual population
(e.g, Brunel & Hakim, 1999; Omurtag et al., 2000; Nykamp & Tranchina,
2000). As stated above, DynamicLib is intended as a generic simulator of cou-
pled systems of equations and an important aspect of this section is to show
that DynamicLib can be employed to solve systems of coupled partial differen-
tial equations as well. But there is another aspect which relates to multi-level
modelling: it can be shown that under suitable conditions, these systems of
coupled Fokker-Planck equations must yield firing rates for populations that
are given by Eq. 5. Indeed this must be the case, as it is claimed in the last
section that the steady state of firing rates are approximated well by Eq. 5 and
it is claimed in this section that the dynamics of large groups of LIF neurons
is approximated well by population density techniques. Then, under the con-
ditions for which Eq. 5 holds, they must describe the same steady state. We
will demonstrate this explicitly for a network of one population (connected to
an input population) and we will consider the radical difference in dynamics
for a network which consists of two coupled populations when they are sim-
ulated by OUAlgorithms or by PopulistAlgorithms. This is an important

26

demonstration of extensibility: a network which is described by OUAlgorithms

can be changed by changing one line of code into a network described by
PopulistAlgorithms.

We will first introduce the population density formalism and describe how
it can be used in conjunction with DynamicLib. Since the development of
the numerical algorithms to solve population density equations have led to
a considerable body of code, this was moved into a dedicated library, Pop-
ulistLib.

Here we will consider neurons that are described by LIF dynamics:

dv

dt
= −γv + I,

below threshold potential Vthreshold. When the membrane potential V passes
Vthreshold, the neuron emits a spike and its potential will be reset to Vreset. v
is the rescaled membrane potential:

v =
V − Vreversal

Vthreshold − Vreversal

,

where Vreversal is the neuron’s reversal potential. I is any external contribution
to the membrane potential, in this paper I is a stochastic input current.

Population density techniques describe infinitely large populations of neurons
by means of a population density ρ(v). ρ(v)dv is defined as the fraction of
neurons which have their membrane potential in the interval [v, v + dv]. It
assumed that each neuron in the population receives a stochastic input, and
that the distribution of this input is identical for all neurons. For the case
where this input is a Poisson spike train and each spike causes a postsynaptic
potential jump of magnitude h, the evolution of the density can be described
by the following partial differential equation (see e.g. (Knight et al., 1996;
Omurtag et al., 2000))

∂ρ

∂t
− γ

∂

∂v
(ρv) = σ(t) {ρ(v − h)− ρ(v)}

+ r(t)δ(v − vreset). (11)

An important boundary condition is:

ρ(1, t) = 0, (12)

which expresses the fact that ρ(v, t) = 0 for v > 1 and ensures that no
unphysical probability can enter the system by leakage. Some neurons will be
pushed across threshold (v = 1), by the input. Such neurons will spike and
the membrane potential will be reset to vreset. The flux across v = 1 is the

27

t (s)

0 20 40 60 80 100 120 140 160 180 200

-3
10×

f
(H

z)

0

2

4

6

8

10

12

14

16

18

20

V (V)

0 5 10 15 20 25

-3
10×

ρ

0

0.05

0.1

0.15

0.2

0.25
3

10×

 (V)µ

12 13 14 15 16 17 18 19 20 21 22

-3
10×

f
(H

z)

0

2

4

6

8

10

12

14

16

18

20

Fig. 10. This is a simulation for the same single population network that was shown
in Fig. 8. The only difference in this figure is that the PopulistAlgorithm was
used instead of the OUAlgorithm. The PopulistAlgorithm evolves a probability
distribution function ρ(v), which gives the distribution of membrane potentials in a
neuronal population. From this, the firing rate can be calculated. As shown in the
figure, the steady state rates are also well predicted by the f − I curve, but the
dynamics of the firing rate shows faster transient behaviour, which is confirmed by
direct simulation of LIF neurons. This transient behaviour is not represented very
well in Wilson-Cowan dynamics (see Fig. 8). The steady state distribution for ρ(v)
are shown on the right: the lightest curve corresponds to µ = 15 mV, the darkest
to µ = 20 mV.

fraction of neurons per unit time that pass v = 1 and is therefore equal to the
population firing rate. The firing rate is given by:

r(t) = σ(t)
∫ 1

1−h
ρ(v′, t)dv′. (13)

The density that leaves the system due to synaptic input will be re-introduced
at the reset potential, which is expressed by the second term on the right hand
side of Eq. 11. This is the first Algorithm with a non trivial NodeState, namely
the probability distribution function ρ(v).

Several authors have published algorithms to solve Eq. 11 numerically (Omurtag
et al., 2000), but to our knowledge none have been released as publicly avail-
able source code. PopulistLib contains algorithms developed by de Kamps
(2003, 2006) and have been implemented in the form of a PopulistAlgorithm.
In Fig. 10 we show the evolution of the state of a neuronal population which

28

receives a fixed input rate over a single connection with fixed synaptic efficacy
analogous to the situation described in the previous section. The code for this
simulation is shown on http://miind.sf.net/examples nn 2008. The code
is nearly identical to that shown in Fig. 7, except that the PopulistAlgorithm
requires more parameters, such as the number of bins used to represent the
population density function ρ(v).

In the simulation we model again a population receiving a stochastic input
with given µ and σ. Like in the previous section, we increase µ from 15 mV
to 20 mV, while σ is kept constant at 2 mV. For smaller µ, the firing rate
converges quickly to its steady state which as in Fig. 8 is predicted by the
f − I curve. For higher µ, however, the firing rate starts to oscillate towards
the steady state value. Although the differences between Fig. 8 and Fig. 10
look innocuous, for a two population network the behaviour between the two
cases is rather different, as we shall see.

It is worthwhile to point out the similarities and differences between OU Algorithm

and PopulistAlgorithm. OU Algorithm simulates a pseudo dynamics, which
converges to sthe teady state firing rates, given by an analytic formula (Eq. 5)
and are therefore based on what the firing rates should be. PopulistAlgorithm
gives a statistical description of the dynamics of a large group of spiking LIF
neurons, which is exact if the population is infinitely large (and already is a
good approximation for several dozens of neurons). The output firing rates
are not set by hand, but emerge as a consequence of the underlying neuronal
dynamics. In particular the transient dynamics is described well.

5.1 Two Populations

Extending to larger networks is simple. As in previous cases, one merely adds
more nodes and connections. Another possibility is to use an existing network.
In Fig. 9 we show the simulation of a two population network consisting of an
excitatory and an inhibitory population, which are connected to themselves
and each other and which are driven by an external current. Changing just a
single statement changes the simulation from a network where the neuronal
dynamics is described by Wilson-Cowan-like dynamics into a network, which
is described by population density techniques.

While in the single population case the differences were relatively minor (the
simulations of Fig. 10 show just a slightly more oscillatory convergence to their
steady states than the simulations of Fig. 8), the two population case shows a
radically different behaviour. Where the two populations in Fig. 9 (which for
convenience has been reproduced in Fig. 11) quickly converge to their steady
state, the dynamics in Fig. 11 does not converge to a steady state at all, in-

29

t (s)
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

f
(H

z)

0

1

2

3

4

5

6

7

t (s)
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

f
(H

z)

0

1

2

3

4

5

6

7

t (s)
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

f
(H

z)

0

1

2

3

4

5

6

7

t (s)
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

f
(H

z)

0

1

2

3

4

5

6

7

Fig. 11. The firing rate of a two population network. Network and neuronal param-
eters are identical to the simulation which used OUAlgorithm. The only difference
with respect to that simulation is the neuronal dynamics. On the left hand side we
have reproduced the simulations that used OUAlgorithm. On the right hand side,
the corresponding firing rates for the network simulated with PopulistAlgorithm.
Where for one population there was no radical difference between the two simulation
methods, for this network there is.

stead displaying strong oscillatory behaviour. In observing the behaviour of
the density of the populations, the behaviour can be explained. The inhibitory
population has a smaller time constant and the population density will reach
threshold before the excitatory population does. This means that the popu-
lation starts to fire and since it is inhibitory, it tends to inhibit itself. This
explains the high frequency oscillations which are present in both popula-
tions’ firing rate. Once the excitatory population starts to fire, the excitatory
population drives itself to higher firing rates. It will also drive the inhibitory
population to a higher firing rate, but not quickly enough to stabilize its own
firing rate. Both the inhibitory population and the excitatory population will
be driven across threshold and the population density of both populations will
end up around the reset potential. Then the whole process starts again. Such
oscillatory behaviour is well documented for networks which have significant
self connections (Mattia & Del Giudice, 2002; Sirovich et al., 2006).

Whether this simulation is a realistic description of the behaviour of neuronal
populations remains to be seen. Refractory effects, spike latencies, intrinsic
dynamics such as spike-frequency adaptation (Muller et al., 2007) and synaptic
dynamics (Tsodyks, Pawelzik, & Makram, 1998) have been shown to have a
moderating effect on this oscillatory behaviour and should be included in the
simulation. At present, they are not. This is both a sobering and an amusing
lesson: by merely changing a few lines of code one can not expect to turn a
coarse level simulation into a realistic one without further understanding of
what goes on at lower levels.

30

6 StructNetLib and ConnectionistLib

6.1 ConnectionistLib

An ANN can be represented with a SparseImplementation. In practice the
only ANNs that feature in MIIND are layered feedforward networks. Although
other networks could easily be created, we never needed them and we reiter-
ate here that those who are looking for a wide variety of connectionist algo-
rithms are better served elsewhere. Nevertheless, it is easy to create ANNs:
LayeredNetwork is a feedforward ANN that relies on SparseImplementation

for its implementation. What is necessary to turn a SparseImplementation

into an ANN?

• Methods to ReadIn and ReadOut patterns to and from the network.
• An Order which describes the order in which the nodes are evaluated.
• A SquashingFunction

Exactly these attributes are provided with LayeredNetwork. Moreover a
BackpropTrainingAlgorithm is provided, which is able to train the network
so that it can produce the desired output in response to given input. An
example of the use of LayeredNetwork is given on http://miind.sf.net/

examples nn 2008.

6.2 StructNetLib

While list of nodes (NodeLinkCollection) and architectures
(e.g., LayeredArchitecture) are perfectly reasonable ways to create net-
works, sometimes one wants to determine the network structure by means of
spatial relationships. Sometimes nodes should be connected if they are within
a certain distance from each other, sometimes nodes have receptive fields that
determine which nodes in a previous layer contribute to its input etc. It is
therefore convenient to be able to describe networks in terms of spatial re-
lations. For visualisation purposes it may also be important that the spatial
structure of a network is represented accurately and not just by its connection
structure. StructnetLib offers functionality to do just this.

A network can be defined in terms of LinkRelations. We illustrate the con-
cept with an example. Ventral stream in visual cortex, for example, is often
modelled by a hierarchical multilayer feedforward network, where the nodes
in each layer have a receptive field: only nodes in a previous layer which are
close enough to a given node will be input to this node. The structure looks
deceptively simple, but in a multi-layered network of this kind there are many

31

Fig. 12. Even a simple feedforward structure must be specified by a large number
of parameters: the number of layers, the size of each layer in two dimensions, the
size of the receptive field of a node in previous layers in two dimensions, the relative
position of the receptive fields of two neighboring nodes. In the figure the lighter
coloured nodes in the lower two layers are in the receptive field of the neuron in the
higher layer. The connections are not shown. Recurrent structures of cortical areas
involving multiple such networks need a great deal more parameters.

parameters, like the number of nodes in each layer in each dimension, the size
of the receptive field, etc. It is tedious and very error-prone work to program
these relations. It is an enormous boost to productivity if a user only needs
to specify the parameters of a given spatial relation, rather than program it
from scratch. MIIND provides the DenseOverlapLinkRelation, which is de-
scribed in Fig. 12 and a number of other LinkRelations, which are a bit more
specialized. It is easy to derive from AbstractLinkRelation if the existing
LinkRelation types are not able to instantiate the desired architecture. They
need to be programmed only once and if they are added to the framework,
they will be available to other users. LinkRelations make it possible to define
highly organized spatial structures which can be defined by a relatively small
number of parameters and once they are defined, they can easily be reused. On
http://miind.sf.net/examples nn 2008 we give code that creates a feed-
forward network of the kind shown in Fig. 12 and show how it can be trained
with backpropagation.

32

7 Visualization and storage of simulation results

7.1 Visualization of DynamicLib simulation results

As described above, Handler objects are responsible for collecting the simu-
lation results and they can be used for visualization as well. The basic idea is
that simulation results are written into a file to be analyzed at a later time. It
is also possible to visualize a simulation whilst it is running. This direct form of
visual feedback was instrumental in developing the Populistalgorithm. This
visualization capability is derived by the RootReportHandler, which relies on
the ROOT package. The ROOT package is a data storage and manipulation
framework with powerful visualization capabilities. It is free, Open Source,
and is created for efficient performance on high data volumes and is used by
the new generation of high energy physics experiments in CERN.

An AsciiReportHandler writes out the simulation results in XML form. This
can be instrumental in the debugging of new Algorithms. Other handlers
compatible with MATLAB for example, could easily be created, but at the
moment are not part of MIIND.

8 LayerMappingLib

8.1 Introduction

Most of the biologically inspired models of the ventral stream are hierarchical
models. The term ”hierarchical models” describes a very broad class of models,
which have in common that they possess nodes with activations coding for a
certain feature at a certain position. The nodes are structured in layers. There
are no interconnections between nodes within a layer, just connections from
one layer to the next one in a feedforward fashion. The connections to a
specific node are limited to a subset of the previous layer, the receptive field.
The node is said to pool over the nodes in its receptive field. For the 2D case
this principle is illustrated in Fig. 13.

An example of a hierarchical model for object recognition is HMAX (Riesenhu-
ber & Poggio, 1999). Some node activations are determined by the maximum
activation over the afferent nodes of the respective nodes. This is a non-linear
operation and can not be implemented as a weighted sum with a squashing
function. First let us consider networks where the activations are determined
by

33

Fig. 13. A feedforward network with two-dimensionally spatial arranged nodes. The
connections of the network are shown solely for the two nodes marked grey in the
upper layer. Each node has a limited receptive field, which is in this case 3 × 3
in size. The receptive fields can overlap, depending on the so called skip size. The
overlap is indicated by the darker nodes.

ai = g(
∑

aj∈RF (ai)

wijaj), (14)

where RF (ai) denotes the set of nodes that belong to the receptive field of
node i and g(x) is a squashing function. If the weight matrix W is shared by
all nodes in a layer this leads to the idea of convolutional networks (LeCun
et al., 1989). A layer in such a network represents an image. The activations
in a layer are the result of Eq. 14. If the receptive field of each node in a
particular layer consists of the afferent node and its surrounding nodes, then
the layer can be seen as the result of a convolution with the weight matrix
W. Such convolutions are common in hierarchical models. They typically aim
at extracting certain features. For example, in the first layer in HMAX filters
are applied to the input image with different scales and orientations. Since a
layer codes for a special feature we call it a feature-map.

This leads to the key idea of LayerMappingLib. A feature-map is represented
by a FeatureMapNode. Hence the activations of such a feature-map-node cor-
respond to a layer in a convolutional network, which is an array of nodes.
FeatureMapNodes are connected in a FeatureMapNetwork. This allows us to
describe a hierarchical model in terms of a FeatureMapNetwork. This facili-
tates the implementation of hierarchical models because the connections be-
tween FeatureMapNodes are fully specified by:

• the receptive field size, specifying the number of afferent nodes,
• the skip size, defining the overlap of receptive fields,
• a filter applied to each receptive field,
• and an output skip size.

The filters in LayerMappingLib are implemented as arbitrary functions. One
of these functions is Convolution() which allows the implementation of linear
filters. Non-linear filters such as the max-operation are implemented as special
functions. An overview of the functions is given in the next section. A function

34

(a) (b)

(c) (d)

Fig. 14. (a) and (c) are examples of a näıve implementation of convolutional net-
works. All nodes in the upper layer share the same weights. The nodes in (a) and (c)
have a receptive field size of 3, (a) has a skip size of 3 and (b) a skip size of 2. (b) and
(d) are the representation of the same networks as a FeatureMapNetwork. Each net-
work has two FeatureMapNodes. The filter used is a convolution with weight matrix
(w0, w1, w2)

operates on a receptive field and writes the result to one or more nodes in a
feature-map. This explains why an output skip size is needed. If the node
function writes to more than one node, the output skip size is greater than
one. Consider for example the argmax function. There are two feature-maps,
and the second is the result of the application of the argmax function to the
first. In the second feature-map a node will have the same activation as the
corresponding node in the first feature map if the corresponding node has the
strongest activation in its receptive field in the first feature-map. If not, the
activation is 0. Thus, argmax selects the strongest activation and suppresses
the other ones.

8.2 Predefined Models

LayerMappingLib provides an infrastructure to realize hierarchical models.
Although the implementation of a model can be based on LayerMappingLib,
the description of the model in terms of C++ code still remains complex.
As the library was implemented with the HMAX model in mind, HMAX can
be instantiated as a predefined model. Predefined models can be instantiated
with a single line of code. An example is given is the program shown in Fig.

35

Fig. 15. Different filters are applied to an input image yielding multiple fea-
ture-maps. The feature-map in layer 0 is the input image. The feature-maps in
layer 1 are obtained by applying a min (respectively max) filter to the input image.
The receptive field is 2 × 2 and the skip size is 2 × 2, too. Thus a sub-sampling
happened, where the receptive fields are not overlapping and the size of the result-
ing feature-maps is halved. The feature-map in layer 2 results from a mean filter
on the feature-maps in layer 1, demonstrating the ability to combine different fea-
ture-maps. Again skip size and receptive field size are 2×2. The feature-map in the
third layer is the result of the argmax filter. argmax suppresses all but the maximum
activation in the receptive field. This implements a winner-take-all mechanism. Here
the receptive field and skip size are again 2×2, but in contrast to the previous layers
the output skip size is 2×2. Thus the size of the feature-map equals its predecessor.

#include <LayerMappingLib/LayerMappingLib . h>

using namespace LayerMappingLib ;

int main (int argc , char∗∗ argv)
{

network myModel = Models : : SimpleTest (16 , 16) ;

FeatureMap<double> i npu t l a y e r =
myModel . i npu t a c t i v a t i on () . f r on t () ;

generate (i npu t l a y e r . begin () ,
i npu t l a y e r . end () ,
rand) ;

evo lve (myModel . begin () ,
myModel . end ()) ;

myModel . debug pr int () ;
}

Fig. 16. SimpleTest, a brief example program.

16.

The network instantiated by calling SimpleTest in line 7 is sketched in Fig.
15. We have chosen 16 × 16 as the dimension of the input layer. In line 11
random noise is assigned to the input feature-map. The input feature-map
can be any other pattern, typically an image. The network is evolved by the
function evolve in line 14. debug print prints the activation of the network to
the console. To inspect larger networks debug print gets rather useless, for this

36

purpose the graphical user interface coming with LayerMappingLib is more
appropriate.

There are different usage scenarios for LayerMappingLib. The simplest is to
assign an image to the input layer and evolve it to get a feature vector as a
response of the model. This feature vector could be used, for example, in a
further classification step.

Another way is to extend an existing model or create a new model. A variety
of predefined filters are therfore implemented and supplied with LayerMap-
pingLib. These filters can be applied to feature-maps. The currently available
filters are:

• Min, Max, Mean
• Sum, Product
• ArgMax
• Convolution
• Perceptron

Here Perceptron is a function that applies a convolution to a weight matrix,
adds a bias and applies a squashing function to the given input. The Perceptron
function already provides all necessary functionality to implement convolu-
tional networks, as proposed by LeCun, Bottou, Bengio, and Haffner (1998).
However, the intention of LayerMappingLib is to evolve the model by suc-
cessive application of filter matrices, not to learn the parameters. Parameter
learning is delegated to ConnectionismLib , the part of MIIND dedicated to
connectionist learning algorithms.

Convolution is a very generic function. Depending on its filter matrix it can
be used for different purposes. In the implementation of HMAX it was used
for orientation filtering with second derivative gaussian filters.

The typical steps for building a new model are as follows:

• Create a FeatureMapNetwork

• Specify the skip size, receptive field size, the filter and the predecessors
of a FeatureMapNode and add it to the network. Often feature-maps in a
layer have the same parameters, so all FeatureMapNodes in a layer can be
instantiated with the same parameters.

• Repeat the previous step until the network has the desired structure.
• evolve the network and read the data needed for further processing from the

respective feature-maps.

If the filters of LayerMappingLib are not sufficient to implement a model, cus-
tom filters can be added. The library was designed to allow the extension of
the filter collection in a convenient way. This is done by using the factory pat-

37

tern. A new filter simply must be registered to a factory class. The structure
of the models presented so far is strictly feedforward. To implement inhibition
and recurrence, networks can be subsumed in a network ensemble. In an en-
semble connections between networks are allowed. This allows to implement a
disinhibition mechanism as proposed by (van der Velde et al., 2004) with only
little effort. Clearly HMAX is not the only model of interest, but it serves as
a good illustration of how filter banks can be combined into networks. We re-
fer to http://miind.sourceforge.net/apiDocs/miind LayerMappingLib/

html/index.html for a detailed explanation of how SimpleTest is created.

9 Discussion

In this paper we have demonstrated the various components of MIIND. Spar-
seImplementationLib can be used on its own. It can be applied wherever sparse
irregular networks must be modelled and is not restricted to neuronal net-
works. DynamicLib is a framework for simulating network processes. We have
given demonstrations on how it can be used. It can also be adopted for other
processes and need not be restricted to neuronal processes only. By introduc-
ing suitable algorithms of one’s own design, one can model essentially every
process at the nodes. By suitably choosing the type of the connections, one
can model many types of networks.

In the introduction, we mentioned the concepts of extensibility and detailing.
Because dynamical models are instantiated in the same way, parts of an ear-
lier model can easily be inserted into a more complex model: essentially one
has to provide the appropriate calls to AddNode and MakeFirstInputOfSecond
as subroutines. These routines then correspond to sub modules of the net-
work. We have given an explicit demonstration of detailing: a network that
initially was created with Wilson-Cowan dynamics can easily be transformed
into one which uses population density techniques, which gives a much more
realistic description of neuronal dynamics. We could take the concept of de-
tailing even further by encapsulating one of the existing neuronal simulators,
such as e.g. NEURON, GENESIS or NEST and encapsulating such simula-
tors in an Algorithm interface. Each node represents a population with full
(or a least non-sparse) connectivity. The basic assumption is that interactions
between populations can be modelled using DynamicNetwork: connections be-
tween individual neurons in the two populations can not be represented and
the influence of one population on another must somehow be described sta-
tistically, so that it can be represented by a single network connection. If this
assumption holds very large networks can be simulated in great detail. We
believe that this assumption will hold quite generally. This is the essential ap-
plication area of DynamicLib: sparsely connected networks, but nodes where
in principle anything can happen. Another way to use detailing is first to cre-

38

ate a network where the coarse structure of a neuronal area is known and to
perform simulations. Later, if more is known about the detailed connectivity of
the area, extra connections can be added by calling MakeFirstInputOfSecond
again. So networks can be continually refined.

9.1 MIIND in relation with other neural simulators

Originally, MIIND was developed for our own use. It turned out to be worth-
while to isolate C++ classes for reuse (in our own models) and also to make
the code more accessible to other users. The factorization of MIIND into
small units with a clear specialization was the first attempt to make MIIND
attractive for other C++ developers. Recently, the issue of interoperability
has gained momentum (Cannon et al., 2007). For a large group of modellers,
Python has become the de facto standard and the development of PyNN
(Brette et al., 2007) is an interesting attempt to provide a common user in-
terface for neural simulators. MIIND will certainly need to develop a Python
interface.

The question of whether a sensible definition within PyNN is possible is an
interesting one. By its nature, with its emphasis on Wilson-Cowan dynamics
and population density methods, it is one level above the most widely used
spiking neuron simulators. Most simulation concepts of NEST, GENESIS,
MOOSE, NEURON and others do not translate directly. To include MIIND
in PyNN, the AddNode and MakeFirstConnectionOfSecond would need corre-
sponding calls in PyNN at the level of populations. MIIND may develop into
a framework that can drive simulations of spiking neurons, but then needs
parallelization (see section 9.2) to be efficient. It would then allow direct com-
parisons between population density methods and spiking neuron simulations.

Although MIIND can represent ANNs efficiently and contains a number of con-
nectionist algorithms, Lens (http://tedlab.mit.edu/∼dr/Lens), PDP++(O’Reilly
& Rudy, 2001) or its successor Emergent (http://grey.colorado.edu/emergent/
index.php/Main Page) and NSL (http://www.neuralsimulationlanguage.
org/ offer more algorithms for connectionist modelling. MIIND distinguishes
itself from these packages with its emphasis on high level algorithms for neu-
ral dynamics. To our knowledge none of these packages offer Wilson-Cowan
dynamics or population density methods.

LayerMappingLib shares some concepts with Topographica (http://topographica.
org). The layers correspond to Topographica’s sheets and similar filters have
been implemented. LayerMappingLib does not concern itself with the devel-
opment of a map, however. It represents rectangular two-dimensional maps
and implements filter operations between them. It exploits the rectangular

39

geometry of the map to implement a efficient implementation of large filter
bank structures, which are present in models such as HMAX and successors
(Riesenhuber & Poggio, 1999; Serre et al., 2007).

Currently, MIIND is used for high level models of visual attention and the
so-called neural blackboard architecture (van der Velde & de Kamps, 2001; de
Kamps & van der Velde, 2001; van der Velde, van der Voort van der Kleij, &
de Kamps, 2004; van der Velde & de Kamps, 2006; de Kamps & van der Velde,
2008). In terms of modelling this entails interacting hierarchies of neural net-
works and the simulation of local neural circuits (van der Velde & de Kamps,
2001; de Kamps, 2005; van der Velde & de Kamps, 2006), usually in terms of
rate models. Although there is a large number of models in cognitive neuro-
science that all use the same, or very similar techniques, (see e.g., O’Reilly &
Rudy, 2001; Lanyon & Denham, 2004; Usher & Niebur, 1996; Hamker, 2005;
O’Reilly, 2006), Emergent (PDP++) is the only other software package that
we are aware of at this level. Most models seem to be created from scratch and
hence the situation in cognitive neuroscience is notably different from that in
computational neuroscience. Here no one would consider to start a model from
scratch, given the neural simulators that are already available. Emergent is a
package which is very successful and has been used in many high level models
of cognition (e.g., O’Reilly & Rudy, 2001; O’Reilly, 2006). It imposes a rather
specific modelling approach, however, and it is not always clear to us how we
could reimplement our own models in Emergent. It also does not seem to offer
algorithms to simulate neural dynamics at the population level.

We believe that MIIND is rather unique in the way that its low level func-
tionality is factored out. Nearly every simulator that deals with biologically
realistic networks has had to deal with the issue of‘representing sparse net-
works. Most people, however, have not considered this to be a problem in its
own right, one which deserves a good generic implementation, or at least a
discussion in terms of Design Patterns (Gamma et al., 1994) so that others
may profit from the experience that implementing a solution brings. Likewise,
the creation of a central simulation loop needs to be solved in every simulator.
It entails not only driving the simulator, but storing the intermediate results
and writing simulation conditions to log files. If this is all properly taken into
account, this mundane problem is not so mundane anymore. And although
nearly every simulation package has had to solve this problem, the way in
which it is solved is usually hidden deep in the source code. We try to make
these low level solutions accessible so that at the very least, they are open for
discussion, but ideally they will be absorbed into the code of others.

We would encourage other developers to do the same. In order to create pack-
ages, such as the ones discussed in (Brette et al., 2007), their developers have
had to solve a large number of low level problems which might find application
outside the specific simulation context for which they were created. Such low

40

level solutions would be the core of Design Patterns for computational and cog-
nitive neuroscience. To encourage reuse and validation of our models, we will
upload our models in ModelDB (http://senselab.med.yale.edu/modeldb).

9.2 Future Challenges

We are now able to configure simulate networks of populations with LIF dy-
namics, both in the super- and the supra-threshold regime (Brunel, 2000).
While it has been demonstrated that population density methods describe
the response of LIF neurons well, it has not been demonstrated that LIF neu-
rons describe biological neurons sufficiently adequately. Approaches which go
beyond LIF neurons are (e.g,. Brette & Gerstner, 2005; Apfaltrer et al., 2006;
Muller et al., 2007). At present, they have not been implemented in publicly
available source code, but the separation between neuronal dynamics and spike
statistics described by de Kamps (2003, 2006) make the algorithms described
there suitable for such extensions. Since LIF neurons may fall short of the
biological realism that is required, developing such algorithms is an important
challenge. We expect to be finished with providing Python interfaces by the
time this publication appears.

DynamicNetwork is an obvious candidate for parallelization. A DynamicNetwork

based on a parallel implementation could be used to drive spiking neuron sim-
ulators. We would like to retain the external interface of DynamicNetwork but
provide a new implementation of DynamicNetworkImplementation based on
MPI (Gropp, Lusk, & Skjellum, 1994). In the longer run the algorithm of
Morrison, Mehring, Geisel, Aertsen, and Diesmann (2005) seems well suited
for MIIND’s network model and is perhaps the better choice.

Acknowledgement

We are grateful to two anonymous reviewers whose comments have improved
the original document considerably.

References

Amit, D. J., & Brunel, N. (1997a). Dynamics of a recurrent network of spiking
neurons before and following learning. Network: Computation in Neural
Systems, 8, 123-152.

41

Amit, D. J., & Brunel, N. (1997b). Model of global spontaneous activity
and local structured activity during delay periods in the cerebral cortex.
Cerebral Cortex, 7, 237-252.

Amit, D. J., & Tsodyks, M. V. (1991). Quantitative study of attractor neural
network retrieving at low spike rates: I. substrate - spikes, rates and
neuronal gain. Network, 2, 259-273.

Apfaltrer, F., Ly, C., & Tranchina, D. (2006). Population density methods
for stochastic neurons with realistic synaptic kinetics:. Network: Com-
putation in Neural Systems, 17, 373-418.

Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire
model as an effective description of neuronalactivity. Journal of Physi-
ology, 94, 3637-3642.

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M.,
Diesmann, M., Morrison, A., Goodman, P. H., Jr., F. C. H., Zirpe, M.,
Natschlager, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner,
A., Rochel, O., Vieville, T., Davison, E. M. A. P., Boustani, S. E., &
Destexhe, A. (2007). Simulation of networks of spiking neurons: A
review of tools and strategies. Journal of Computational Neuroscience,
23(3), 349-398.

Brooks, R. A. (1991). Intelligence without reason. In J. Myopoulos & R. Reiter
(Eds.), Proceedings of the 12th international joint conference on artifi-
cial intelligence (IJCAI-91) (p. 569-595). Sydney, Australia: Morgan
Kaufmann publishers Inc.: San Mateo, CA, USA.

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and
inhibitory spiking neurons. Journal of Computational Neuroscience, 8,
183-208.

Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of
integrate-and-fire neurons with low firing rates. Neural Computation,
11, 1621-1671.

la Camera, G., Rauch, A., Lscher, H. R., Senn, W., & Fusi, S. (2004). Mini-
mal models of adapted neuronal response to in vivo-like input currents.
Neural Computation, 16(10), 2101-2124.

Cannon, R. C., gewaltig, M.-O., Gleeson, P., Bhalla, U. S., Cornelis, H., Hines,
M. L., Howell, F. W., Muller, E., Stiles, J. R., Wills, S., & de Schutter,
E. (2007). Interoperability of neuroscience modeling software: Current
status and future directions. Neuroinformatics, 5, 127-138.

Djurfeldt, M., Lundqvist, M., Johansson, C., Rehn, M., Ekeberg, Ö.., &
Lansner, A. (2008). Brain-scale simulation of the neocortex on the
blue gene/l supercomputer. IBM Journal of Research and Development,
52, 31-42.

Fromherz, P. (2003). Semiconductor chips with ion channels, nerve cells and
brain. Physica E, 16, 24-34.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position.
Biological Cybernetics, 4, 193-202.

42

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns
- elements of reusable object-oriented software. Reading, MA: Addison-
Wesley.

Gardiner, C. W. (1997). Handbook of stochastic methods for physics, chemistry
and the natural sciences. New York Berlin Heidelberg Tokyo: Springer-
Verlag.

Gerstner, W. (1995). Time structure of the activity in neural network models.
Physical Review E, 51, 738-758.

Gerstner, W., & Kistler, W. (2002). Spiking neuron models - single neurons,
populations, plasticity. Cambridge: Cambridge University Press.

Gropp, W., Lusk, E., & Skjellum, A. (1994). Using MPI - portable parallel pro-
gramming with the message-passing interface. Cambridge MA, London
England: The MIT Press.

Hamker, F. H. (2005). The reentry hypothesis: The putative interaction of
the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT
for attention and eye movement. Cerebral Cortex, 15, 431-447.

Haskell, E., Nykamp, D. Q., & Tranchina, D. (2001). Population density meth-
ods for large-scale modelling of neuronal networks with realistic synaptic
kinetics: cutting the dimension down to size. Network: Computation in
Neural Systems, 12, 141-174.

van Kampen, N. G. (1997). Stochastic processes in physics and chemistry.
Amsterdam: North-Holland.

de Kamps, M. (2003). A simple and stable numerical solution for the popu-
lation density equation. Neural Computation, 15, 2129-2146.

de Kamps, M. (2005). A model for delay activity without recurrent excitation.
Lecture Notes in Computer Science, 3696, 229-234.

de Kamps, M. (2006). An analytic solution of the reentrant poisson master
equation and its application in the simulation of large groups of spiking
neurons. In Proceedings WCCI2006 (IJCNN2006). Vancouver, CA.

de Kamps, M., & Baier, V. (2007). Multiple interacting instantiations of
neuronal dynamics (miind): a library for rapid prototyping of models in
cognitive neuroscience. In Proceedings IJCNN2007. Florida, USA.

de Kamps, M., & van der Velde, F. (2001). From artificial neural networks
to spiking populations of neurons and back again. Neural Networks, 14,
941-953.

de Kamps, M., & van der Velde, F. (2008). A neurodynamic model for pop-out.
In Preparation.

Knight, B. W. (1972). Dynamics of encoding in a population of neurons.
Journal of general Physiology, 59, 734-766.

Knight, B. W., Manin, D., & Sirovich, L. (1996). Dynamical models of inter-
acting neuron populations in visual cortex. In E. C. Gerf (Ed.), Sympo-
sium on robotics and cybernetics: Computational engineering in systems
applications. France: Cite Scientifique.

Koenig, A., & Moo, B. E. (2005). Templates and duck typing. Dr. Dobbs
Portal.

43

Lanyon, L. J., & Denham, S. L. (2004). A model of active visual search
with object-based attention guiding scan paths. Neural Networks, 17,
873-897.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11), 2278-2324.

LeCun, Y., Jackel, L. D., Boser, B., Denker, J. S., Graf, H. P., Guyon, I.,
Henderson, D., Howard, R. E., & Hubbard, W. (1989). Handwritten digit
recognition: Applications of neural net chips and automatic learning.
IEEE Communication, 41-46. (invited paper)

Markram, H. (2006). The blue brain project. Nature Reviews Neuroscience,
7 (2), 153–160.

Mattia, M., & Del Giudice, P. (2002). Population dynamics of interacting
spiking neurons. Phys. Rev. E, 66 (5), 051917.

Morrison, A., Aertsen, A., & Diesmann, M. (2007). Spike-timing-dependent
plasticity in balanced random networks. Neural Computation, 19, 1437-
1467.

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., & Diesmann, M. (2005).
Advancing the boundaries of high-connectivity network simulation with
distributed computing. Neural Computation, 17, 1776-1801.

Muller, E., Buesing, L., Schemmel, J., & Meier, K. (2007). Spike-frequency
adapting neural ensembles: Beyond mean adaptation and renewal theo-
ries. Neural Computation, 19 (11), 2958-3010.

Navarro, X., Krueger, T. B., Lago, N., Micera, S., Stieglitz, T., & Dario, P.
(2005). A critical review of interfaces with the peripheral nervous system
for the control of neuroprostheses and hybrid bionic systems. Journal of
the Peripheral Nervous System, 10(3), 229-258.

Nicolelis, M. A., Dimitrov, D., Carmena, J. M., Crist, R., Lehew, G., Kralik,
J. D., & Wise, S. P. (2003). Chronic, multisite, multielectrode recordings
in macaque monkeys. Proceedings of the National Academy of Sciences
of the United States of America, 100(19), 11041-11046.

Nykamp, D. Q., & Tranchina, D. (2000). A population density approach that
facilitates large-scale modeling of neural networks: Analysis and an ap-
plication to orientation tuning. Journal of Computational Neuroscience,
8, 19-50.

Omurtag, A., Knight, B. W., & Sirovich, L. (2000). On the simulation of
large populations of neurons. Journal of Computational Neuroscience,
8, 51-63.

O’Reilly, R. (2006). Biologically based computational models of high-level
cognition. Science, 314, 91-94.

O’Reilly, R., & Rudy, J. W. (2001). Conjunctive representations in learning
and memory. principles of learning in the neocortex and hippocampus.
Psychological Review, 108, 311-345.

Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. MIT Press.
Prechelt, L. (2000). An empirical comparison of seven programming languages.

44

Computer, 33 (10), 23-29.
Renart, A., Brunel, N., & Wang, X. (2004). Mean-field theory of recurrent

cortical networks: From irregular spiking neurons to working memory. In
J. Feng (Ed.), Computational neuroscience : A comprehensive approach.
Boca Raton: CRC Press.

Ricciardi, L. M. (1977). Diffusion processes and related topics in biology.
Berlin: Springer Verlag.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recogni-
tion in cortex. Nature Neuroscience, 2, 1019-1025.

Schoen, I., & Fromherz, P. (2007). The mechanism of extracellular stim-
ulation of nerve cells on an electrolyte-oxide-semiconductor capacitor.
Biophysics Journal, 92, 1096-1111.

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Object
recognition with cortex-like mechanisms. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29 (3), 411-426.

Sirovich, L., Omurtag, A., & Lubliner, K. (2006). Dynamics of neural popula-
tions: Stability and synchrony. Network: Computation in neural systems,
17, 249-272.

Tsodyks, M. V., Pawelzik, K., & Makram, H. (1998). Neural networks with
dynamic synapses. Neural Computation, 10, 821-835.

Usher, M., & Niebur, E. (1996). Modeling the temporal dynamics of it neurons
in visual search: A mechanism for selective top-down attention. Journal
of Cognitive Neuroscience, 8, 311-327.

van der Velde, F., & de Kamps, M. (2001). From knowing what to knowing
where: Modeling object-based attention with feedback disinhibition of
activation. Journal of Cognitive Neuroscience, 13(4), 479-491.

van der Velde, F., & de Kamps, M. (2006). Neural blackboard architectures
of combinatorial structures in cognition. Behavioral and Brain Sciences,
29(1), 37-70.

van der Velde, F., de Kamps, M., & van der Voort van der Kleij, G. (2004).
Closed-loop attention model for visual search. Neurocomputing, 58-60,
607-612.

van der Velde, F., van der Voort van der Kleij, G., & de Kamps, M. (2004).
Increasing number of objects impairs binding in visual working memory.
Neurocomputing, 58-60, 599-605.

Webb, B. (2001). Can robots make good models of biological behaviour?
Behavioral and Brain Sciences, 24, 1033-1050.

Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions
in localized populations of model neurons. Biophysical Journal, 12, 1–23.

45

