
This is a repository copy of Self-Adaptive Software with Decentralised Control Loops.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/83495/

Version: Accepted Version

Proceedings Paper:
Calinescu, Radu orcid.org/0000-0002-2678-9260, Gerasimou, Simos orcid.org/0000-0002-
2706-5272 and Banks, Alec (2015) Self-Adaptive Software with Decentralised Control
Loops. In: 18th International Conference on Fundamental Approaches to Software
Engineering (FASE). Lecture Notes in Computer Science . Springer , pp. 235-251.

https://doi.org/10.1007/978-3-662-46675-9_16

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Self-Adaptive Software with Decentralised

Control Loops

Radu Calinescu1, Simos Gerasimou1, and Alec Banks2

1 Department of Computer Science, University of York, UK
2 Defence Science and Technology Laboratory, Ministry of Defence, UK

Abstract. We present DECIDE, a rigorous approach to decentralising
the control loops of distributed self-adaptive software used in mission-
critical applications. DECIDE uses quantitative verification at runtime,
first to agree individual component contributions to meeting system-
level quality-of-service requirements, and then to ensure that components
achieve their agreed contributions in the presence of changes and failures.
All verification operations are carried out locally, using component-level
models, and communication between components is infrequent. We illus-
trate the application of DECIDE and show its effectiveness using a case
study from the unmanned underwater vehicle domain.

1 INTRODUCTION

A growing number of mission-critical software systems operate in uncertain sce-
narios characterised by internal failures and environment changes. These sys-
tems must self-adapt to comply with strict dependability, performance and
other quality-of-service (QoS) requirements. Achieving QoS compliance is a great
challenge of self-adaptive software [21]. To address it, recent research proposed
the use of formal methods to drive self-adaptation within software systems. A
promising approach in this area is runtime quantitative verification (RQV) [3,
6, 9], which uses quantitative model checking to reverify the QoS properties of
software after environment or internal changes. This reverification identifies, and
may in certain scenarios predict, QoS requirement violations, and supports the
dynamic reconfiguration of the software for recovery from, or prevention of, such
violations [3]. RQV has been successfully used to develop centralised-control self-
adaptive software in domains including dynamic service selection [4], datacentre
resource allocation [16] and dynamic power management [6].

Here we extend the applicability of RQV to distributed self-adaptive software.
To this end, we introduce an RQV-driven approach for DEcentralised Control
In Distributed sElf-adaptive software (DECIDE). DECIDE addresses two key
objectives from the latest research roadmap for self-adaptive systems [21]:

1. Decentralisation of control loops, to eliminate the single point of failure cre-
ated by centralised control loops, to improve the flexibility of self-adaptive
systems, and to fulfil the original autonomic computing vision [18].

2. Practical runtime verification and validation, to guarantee compliance with
the QoS requirements of mission-critical self-adaptive software.

To the best of our knowledge, DECIDE is the first approach that uses formal ver-
ification to simultaneously decentralise the control loop of self-adaptive systems,
and provide guarantees on their compliance with QoS requirements.

1. Local capability analysis
& sharing of capability

summary

2. Receipt of peer
capability summaries

3. Selection of local
contribution-level

agreement

4. Execution of local
control loop

none

major peer change(s)

major local change

major
change?

Fig. 1: Decentralised self-adaptation workflow for a DECIDE component

Overview: Each component of a DECIDE system executes a decentralised con-
trol workflow comprising the four stages shown in Fig. 1. First, local RQV is
used in a local capability analysis stage, to establish a capability summary, i.e., a
finite set of alternative contributions the component could make towards achiev-
ing the system-level QoS requirements. This stage is executed infrequently (e.g.,
when the component joins the system), and the capability summary is shared
with the peer components. The local computation or the receipt of a peer ca-
pability summary triggers the selection of a local contribution-level agreement
(CLA). This CLA is one of the alternative contributions from the capability
summary of the local component, chosen such that the system complies with its
QoS requirements as long as each component achieves its CLA. Most of the time,
the execution of a local control loop is the only DECIDE stage carried out by
a component. Its purpose is to ensure compliance with the selected component
CLA through RQV-driven local adaptation. Infrequently, events such as signifi-
cant workload increases or failures of component parts render a DECIDE local
control loop unable to achieve its CLA. These events are termed major changes,
and require the computation and selection of new local CLAs.

Contributions: The original contributions of the paper are (a) a theoretical foun-
dation for decentralising the control loops of distributed self-adaptive software;
(b) an RQV method for devising component capability summaries in distributed
self-adaptive systems; (c) a method for the decentralised selection of component-
level agreements; and (d) a case study that used DECIDE to develop a simulated
distributed embedded system in the unmanned marine vehicle domain.

Structure of the paper: Sections 2–3 introduce the theoretical background under-
lying DECIDE and the distributed embedded system used for its illustration and
evaluation. The stages of DECIDE are presented in Section 4, and its implemen-
tation and evaluation are described in Section 5. Section 6 presents related work,
and Section 7 summarises our findings and discusses future work directions.

2 PRELIMINARIES

DECIDE is applicable to systems that exhibit stochastic behaviour, and in-
volves the runtime quantitative verification of formal models that describe the
behaviour of their components. Here we present a class of such models called
continuous-time Markov chains (CTMCs), and the temporal logic continuous
stochastic logic (CSL), which is used to express the properties of CTMCs, as
we will show for the running example we will introduce in Section 3. However,

no change is required to use DECIDE with other types of probabilistic models,
including discrete-time Markov chains [4, 5, 11] and probabilistic automata [16].

Definition 1. A continuous-time Markov chain (CTMC) over a set of atomic
propositions AP is a tuple

M = (S, s0,R, L), (1)

where:

• S is a finite set of states, and s0 ∈ S is the initial state;

• R : S×S → [0,∞) is a transition rate matrix such that for any state si ∈ S,
the probability that the CTMC will transition from state si to another state

within t > 0 time units is 1 − e
−t·

∑
sk∈S R(si,sk), and the probability that the

new state is sj ∈ S is given by R(si, sj)/
∑

sk∈S R(si, sk).

• L : S → 2AP is a labelling function.

Quantitative or probabilistic model checkers operate on models expressed in
a high-level, state-based language. Given a CTMC specified in this language, its
representation (1) is derived automatically. We use the model checker PRISM
[20], which supports the analysis of CTMCs extended with costs/rewards.

Definition 2. A cost/reward structure over a CTMC with state set S is a pair
of real-valued functions (ρ, ι), where

• ρ : S → R≥0 is a state reward function that defines the rate ρ(s) at which
the reward is obtained while the Markov chain is in state s;

• ι : S × S → R≥0 is a transition reward function that defines the reward
obtained each time a transition occurs.

Continuous stochastic logic (CSL) augmented with costs/rewards [19] is used to
specify the quantitative properties to analyse for CTMC models.

Definition 3. Let AP be a set of atomic propositions, a ∈AP , p ∈ [0, 1], I an
interval in R and ⊲⊳ ∈ {≥, >,<,≤}. Then a state formula Φ and a path formula
Ψ in CSL are defined by the following grammar:

Φ ::= true|a|Φ ∧ Φ|¬Φ|P⊲⊳p[Ψ]|S⊲⊳p[Ψ]; Ψ ::= XΦ|Φ ∪≤I Φ (2)

and the cost/reward augmented CSL state formulae are defined by the grammar:

Φ ::= R⊲⊳r[I
=T]|R⊲⊳r[C

≤T]|R⊲⊳r[FΦ]|R[S] (3)

CSL formulae are interpreted over states of a CTMC model. Path formulae only
occur inside the probabilistic operator P and steady-state operator S, which
define bounds on the probability of system evolution. For instance, a state s
satisfies a formula P⊲⊳p[Φ] if the probability of the future evolution of the system
meets the bound ⊲⊳ p. For a path, the “next” formula XΦ holds if Φ is satisfied in
the next state; the “bounded until” formula Φ1∪

≤IΦ2 holds if before Φ2 becomes
true at time step x ∈ I, Φ1 is satisfied continuously in the interval [0, x) ∩ I.
If I = [0,∞), the formula is termed “unbounded until”. The notation s |= Φ
and M |= Φ indicates that Φ is satisfied in state s and in the initial state of a
CTMC model M , respectively. The semantics of the cost/reward operator R is

as follows: R⊲⊳r[I
=T] denotes the expected value of the reward at time instant

T ; R⊲⊳r[C
≤T] denotes the expected cumulative reward up to time T ; R⊲⊳r[FΦ]

gives the expected cumulative reward before reaching a state that satisfies Φ;
and R[S] is the average expected reward in the long-run.

3 RUNNING EXAMPLE

We will illustrate the application of DECIDE using a distributed multi-UUV
(unmanned underwater vehicle) embedded system that extends our single-UUV
system from [15]. UUVs are used for oceanic surveillance, survey and rescue
operations, mine detection, and discovery of natural resources [24]. Enhancing
UUV systems with self-adaptive capabilities is highly desirable to ensure their
successful operation in the uncertain marine environment. This is particularly
important given the limited ability to control UUV systems remotely, the criti-
cality of their missions, and the need to minimise loss of expensive equipment.

We consider an n-UUV system deployed on a surveillance and data collection
mission. The UUVs travel within proximity of each other, and the i-th UUV is
equipped with ni > 0 on-board sensors that can take periodic measurements
of a characteristic of the ocean environment, e.g., dissolved oxygen, salinity or
temperature. The l-th sensor of UUV i operates with varying rate ril ≥ 0, and
the probability pil that one of its measurements is sufficiently accurate for the
purpose of the mission depends on the vehicle speed spi∈ [0, spmax

i]. This is typ-
ical for such devices, e.g., the measurement error of sonars can be approximated
by a normal distribution with zero mean and standard deviation that increases
with speed. For each measurement taken, an amount of energy eil is consumed.
Each UUV can switch on and off its sensors individually to save battery power;
these operations consume energy given by eonil and eoffil , respectively. The UUV
system must meet the following system-level QoS requirements:

R1: The n UUVs should take at least 1000 measurements of sufficient accuracy
per 60 seconds of mission time.

R2: At least two UUVs should have switched-on sensors at any time.

R3: Subject to R1–R2 being satisfied, the system should minimise energy use
(so that the mission can continue for longer).

In addition, each UUV i must satisfy the local QoS requirements below:

R4: The energy ei used by sensors in a minute should not exceed emax
i Joules.

R5: No sensor with accuracy probability below pmin
i should be used.

R6: Subject to R4–R5 being satisfied, the UUV should minimise the local cost
function w1ei + w2sp

−1
i , where w1, w2 > 0 are UUV-specific weights.

In a dynamic environment, each UUV i should adapt to changes in the operating
rate of its sensors and to sensor failures, by continually adjusting:

a) the UUV speed spi;

b) the sensor configurations xi1, xi2, . . . , xini
, where xij = 1 if the j-th sensor

is switched on and xij = 0 otherwise,

so that the system- and the UUV-level QoS requirements are met at all times.

4 APPROACH

DECIDE distributed self-adaptive systems comprise n>1 components. We use
Cfg i and Env i to denote the set of possible configurations and the set of possible
environment states for the i-th component, respectively. Thus, Cfg i corresponds
to parameters that the local control loop of component i can modify, and Env i

to parameters that the component can only observe. In addition, component i
has mi ≥ 1 QoS attributes attr i1 ∈ V1, attr i2 ∈ V2, . . . , attr imi

∈ Vmi
, where

the value domain Vj of the j-th attribute could be R, R+, B = {true, false}, etc.
We further assume that the value of the j-th attribute depends on the current
environment state e ∈ Env i and configuration c ∈ Cfg i, and is given by:

attr ij(e, c) = fij(e, c,Mi(e, c) |= Φij), (4)

where Mi is a Markov model parameterised by the state of the environment the
component operates in and the configuration selected by its local control loop,
Φij is a probabilistic temporal logic formula, and f(·, ·, ·) is a function that can be
evaluated in O(1) time. The mi attributes (Fig. 2) have the following roles:

1. Attributes attr i1, attr i2, . . . , attr im, m < mi, are associated with the m > 0
QoS requirements of the DECIDE distributed system. Formally, the j-th sys-
tem QoS requirement, 1 ≤ j ≤ m, is specified as

expr j(attr1j , attr2j , . . . , attrnj) ⊲⊳j bound j (5)

where a non-exhaustive list of options for the expression exprj , relational
operator ⊲⊳j and bound bound j is shown in Table 1.

2. Attribute attr i,m+1 is a measure of the system-level cost associated with the
current environment state and configuration of component i. Accordingly,
Vm+1 = R+ and the system-level cost

∑n
i=1 attr i,m+1 needs to be minimised,

subject to the m QoS requirements being satisfied.

3. Attributes attr i,m+2, attr i,m+3, . . . , attr i,mi−1 ∈ B represent component-level
QoS requirements that are satisfied iff

attr ij = true for j = m+ 2,m+ 3, . . . ,mi − 1. (6)

4. Attribute attr i,mi
∈ R+ is a measure of the component-level cost, which must

be minimised subject to system and component QoS requirements being met.

Example 1. The set of configurations for UUV i of our distributed n-UUV sys-
tem from Section 3 is Cfg i = Spi×{0, 1}ni , where (spi, xi1, xi2, . . . , xini

) ∈ Cfg i
give the UUV speed spi and sensor configurations xi1, xi2, . . . , xini

selected by
the local control loop. The set of environment states for UUV i is Env i =R

ni

+ ,
where (ri1, ri2, . . . , rini

) ∈ Env i gives the measurement rates for the ni sensors.
The Markov model Mi(e, c) used to compute the QoS attributes of UUV i

in (4) is obtained through the parallel composition of CTMC models of the ni

sensors: Mi = Mi1 ‖ Mi2 ‖ . . . ‖ Mini
. Fig. 3 depicts the model of the l-th

sensor, when this sensor is switched on (xil = 1) or off (xil = 0), hence the
transition from the initial state s0 to state s1 or s6, respectively. The transition

system-level
QoS requirements

system-level
 cost

local QoS
 requirements

local
 cost

Fig. 2: QoS attributes of a DECIDE component and their roles

Table 1: Categories of DECIDE system-level QoS requirements from (5)

Vj expr j(attr1j , attr2j , . . . , attrnj) ⊲⊳j∈ bound j∈
Types of
QoS requirements

R+

∑n

i=1
wiattr ij , wi>0 weights {<,≤,≥, >} R+

throughput, energy
usage, response time

[0, 1]
∏n

i=1
wiattr ij , wi>0 weights {<,≤,≥, >} [0, 1] reliability, availability

B booleanExpr(attr1j , . . . , attrnj) {=, 6=} B liveness, security

s1 → s2 corresponds to a measurement being taken with rate ril. With proba-
bility pil, the measurement is accurate and Mi transitions to state s3; otherwise
it transitions to state s4. This operation continues while the sensor is active, as
modelled by the transition s5 → s1. The CTMC is augmented with two reward
structures, whose non-zero elements are shown in Fig. 3 in rectangular boxes,
and dashed rectangular boxes, respectively. The first structure (“energy”) asso-
ciates the energy used to switch the sensor on (eonil) and off (eoffil) and to perform
a measurement (eil) with the transitions that model these events. The second
structure (“measure”) associates a reward of 1 to accurate measurements.

Given the model Mi, the CSL formulae and the functions in Table 2 are
used in (4) to establish the QoS attributes for requirements R1–R6. The m = 2
system-level requirements, R1 and R2, are given by the following instances of (5):

R1:
n
∑

i=1

attr i1 ≥ 1000 and R2:
∨

1≤i1<i2≤n

(attr i12 ∧ attr i22) = true (7)

4.1 DECIDE Stage 1: Local capability analysis

During this DECIDE stage, each component uses runtime quantitative verifica-
tion to assemble a summary of its capabilities, as formally defined below.

Definition 4. A finite set CS i ⊂ V1×V2×· · ·×Vm+1 is an α-confidence capa-
bility summary for the i-th component of a DECIDE system iff, for any (ai1,
ai2, . . . , ai,m+1)∈CS i, the local control loop of the component can ensure that:

(i) attr ij ⊲⊳j aij, for 1 ≤ j ≤ m; (ii) attr i,m+1 ≤ ai,m+1; and
(iii) attr ij = true, for m+ 1 < j ≤ mi − 1

with probability at least α ∈ (0, 1).

The DECIDE method for calculating the α-confidence capability summary of
system component i, 1≤ i≤n, involves the local execution of the steps below.

1. Configuration analysis: Select Ni > 0 disjoint configuration subsets Cfg1i ,
Cfg2i , . . . ,Cfg

Ni

i ⊂ Cfg i that correspond to different modes of operation for
component i. What constitutes a mode of operation is component dependent.
Examples include running different numbers of component instances, or oper-
ating with different degrees of accuracy. In our running example, UUV modes
of operation correspond to different sensor sets being used.

s0 s1 s2 s3 s5

s4s6

xil

1−xil

ril pil

1−pil
1

1
1

1
eoffil

eil 1
{startil}

{onil}

{offil}

{accurateil}

{doneil}

{inaccurateil}

eonil {readil}

Fig. 3: CTMC model Mil of the l-th sensor from UUV i

2. Environment analysis: Identify subsets of environment states Env1
i , Env

2
i ,

. . . , EnvNi

i ⊆ Env i associated with the Ni configuration subsets, such that

the probability that the environment state is in Envk
i is at least α, for any

1 ≤ k ≤ Ni. These subsets can be identical. However, in the general case,
each configuration subset Cfgki may render different areas of the environment
state irrelevant, and DECIDE exploits this as illustrated in Example 2.

3. Attribute analysis 1: Check that for any 1 ≤ k ≤ Ni and for any 1 ≤ j ≤
m with ⊲⊳j∈ {=, 6=}, the QoS attribute attr ij(c, e) has a single value, akij ,

for all (c, e) ∈ (Cfgki ,Env
k
i). When this is not the case, further partition

the configuration set Cfgki into disjoint subsets that satisfy this constraint.
As shown in Table 1, one of the scenarios in which ⊲⊳j∈ {=, 6=} is when

Vj = B. In this case, Cfgki needs to be partitioned into two subsets. For
other scenarios (e.g., when Vj = R+), DECIDE can be applied only if this

operation partitions Cfgki into a finite (and usually small) number of subsets.
The rationale for this operation is that we want to associate each configuration
set Cfgki with a “bound” akij for each of attr ij , 1 ≤ j ≤ m, and the bounds

akij are common values for QoS attributes attr ij for which ⊲⊳j∈{=, 6=}.

4. Attribute analysis 2: For all attr ij , 1 ≤ j ≤ m, with ⊲⊳j∈ {<,≤,≥, >}, and

for each configuration set Cfgki , find simultaneous bounds akij ∈ Vj such that

∀e∈Envk
i • ∃c∈Cfgki • global(c, e) ∧ local(c, e), (8)

where global(c, e) =
∧

1 ≤ j ≤ m
⊲⊳j /∈{=, 6=}

(

attr ij(c, e) ⊲⊳j a
k
ij

)

and local(c, e) =
∧mi−1

j=m+2

attr ij(c, e). When there is a single global QoS attribute attr ij with ⊲⊳j∈{<
,≤,≥, >}, its associated akij bound can be calculated as

akij =







max
e∈Envk

i

min
c∈Cfgk

i
,local(c,e)

attr ij(c, e), if ⊲⊳j∈ {<,≤}

min
e∈Envk

i

max
c∈Cfgk

i
,local(c,e)

attr ij(c, e), otherwise
(9)

Otherwise, a multi-objective optimisation technique [10, 13] needs to be used.

5. Cost analysis: Calculate the cost upper bound

aki,m+1 = max
e∈Envk

i

min
c∈Cfgk

i
,global(c,e)∧local(c,e)

attr i,m+1(c, e).

6. Capability summary assembly: Use the akij bounds from steps 3–5 to assemble

CSi = {cs1i , cs
2
i , . . . , cs

Ni

i }, (10)

where cski = (aki1, a
k
i2, . . . , a

k
i,m+1), 1 ≤ k ≤ Ni.

Table 2: QoS attributes for UUV i, where val ij is the value of Mi(e, c) |=Φij

j Vj Φij attr ij = fij(e, c, val ij)

1 R+ R“measure”
=?

[

C≤60
]

val i1
2 B P≥1 [F oni1|oni2| . . . |onini] val i2

3 R+ R
“energy”

=?

[

C≤60
]

val i3

4 B R
“energy”

≤emax

i

[

C≤60
]

val i4

5 B
∧ni

l=1

(

readil ⇒ P≥pmin

i
[X accurateil]

)

val i5

6 B R
“energy”

=?

[

C≤60
]

w1val i6 + w2sp
−1

rate [s−1] rate [s−1]

Fig. 4: Environment analysis for configuration sets Cfg2i and Cfg4i in Example 2

We are now ready for the following result, whose proof is available at http:

//www-users.cs.york.ac.uk/~simos/DECIDE.

Theorem 1. The set CSi in (10) is an α-confidence capability summary for
component i of a DECIDE system.

At the end of the local capability analysis stage of DECIDE, the local capa-
bility summary (10) is shared with the other components within the distributed
system. For this purpose, we envisage DECIDE using recently emerged platforms
for the engineering of distributed systems such as Kevoree [14] and DEECo [2].

Example 2. Suppose that the i-th UUV from our running example has ni = 2
on-board sensors whose operating rates ri1 and ri2 are normally distributed
with mean 2s−1 and standard deviation 0.2s−1, and with mean 4s−1 and stan-
dard deviation 0.3s−1, respectively. The UUVi environment state has the form
(ri1, ri2), and the set of all environment states is Env i = [0,∞]2. Also, assume
that the UUV speed spi can be adjusted in the range [1m/s, 5m/s]. Hence, the
UUV configuration set is Cfg i = [1, 5] × {0, 1}2, where for any configuration
(spi, xi1, xi2) ∈ Cfg i, xij = 1 if sensor j is switched on and xij = 0 otherwise, for
j ∈ {1, 2}. Finally, suppose that the bounds for local QoS requirements R4–R5
are emax

i = 1000J and pmin
i = 0.9, and that the energy used by the sensor oper-

ations are: ei1 = 3J , eoni1 = 15J , eoffi1 = 3J , ei2 = 2J , eoni2 = 10J , eoffi2 = 2J . An
(α = 0.95)-confidence capability summary for UUV i is built as follows:

1. Configuration analysis—A UUV mode of operation corresponds to using dif-
ferent subsets of sensors, so there are four configuration subsets: Cfgki =
{(spi, 0, 0)|spi∈ [1, 5]}, Cfg2i ={(spi, 1, 0)|spi∈ [1, 5]}, Cfg3i ={(spi, 0, 1)|spi∈
[1, 5]} and Cfg4i ={(spi, 1, 1)|spi∈ [1, 5]}.

2. Environment analysis—Assuming that the sensor rates ri1 and ri2 are in-
dependent, the environment state subsets Envk

i , 1≤ k ≤ 4, are obtained as
Carthesian products of α1 and α2 confidence intervals for ri1 and ri2, respec-
tively, α1α2=0.95. When a single sensor j∈{1, 2} is active for a configuration
set Cfgki , we use αj =α for it and α3−j =1 for the inactive sensor when cal-

culating Envk
i . This allows the UUV to “promise” a stronger contribution

towards the system requirements by disregarding the uncertainty in the state
of switched-off sensors for configuration sets that have such sensors (Figure 4).

3. Attribute analysis 1—The relational operators for the m=2 system require-
ments (7) are ⊲⊳1=‘≥’ and ⊲⊳2=‘=’, so DECIDE checks that the second at-
tribute from Table 2 takes a single value within each configuration set Cfgki .

(a) (b)

Fig. 5: Verification of Φi1 and Φi3 from Table 2; shaded areas correspond to
configurations that violate local requirement R5

This check is successful because attr i2 = false = a1i2 for all configurations in
Cfg1i (as both sensors are switched off) and attr i2= true=aki2 for all configu-
rations in Cfgki , 2≤k≤4. Hence, no partition of any Cfgki set is required.

4. Attribute analysis 2—Requirement R1 in (7) is the only global requirement
whose associated relational operator ⊲⊳1 belongs to the set {<,≤,≥, >}. Thus,
DECIDE uses RQV to derive the bounds aki1 in (9) for 1≤k≤4. Fig. 5a shows
the analysis that establishes a2i1 using the model checker PRISM [20]. The
worst-case environmental scenario in Env2

i is when ri1=1.61s−1; the highest
number of measurements in this scenario (i.e., a2i1) is achieved for spi=1m/s.

5. Cost analysis—As shown in Fig. 5b, the cost attr i3 is constant for each Envk
i ,

and the maximum cost, aki3, corresponds to the highest sensor rate(s) in Envk
i .

6. Capability summary assembly—The bounds akij , 1≤j≤3, 1≤k≤4, obtained
in steps 3–5 are organised into the four-element capability summary CSi =
{(0, false, 5), (94, true, 435), (193, true, 535), (279, true, 984)}.

4.2 DECIDE Stage 2: Receipt of peer capability summaries

In this stage, the α-confidence capability summary (10) of a component is shared
with all the other components within the system. DECIDE does not propose a
new mechanism for sharing capability summaries. Instead, this DECIDE stage
relies on the data sharing capabilities of recently emerged platforms for the
engineering of distributed systems such as Kevoree [14] and DEECo [2].

4.3 DECIDE Stage 3: Selection of component contributions

In this stage, each of the n system components decides its contribution to the
realisation of the system QoS requirements. To this end, each component uses
the capability summaries CS1, CS2, . . . , CSn to solve the optimisation problem:

minimise
∑n

i=1 ai,m+1

subject to expr j(a1j , a2j , . . . , anj) ⊲⊳j bound j , 1 ≤ j ≤ m
and (ai1, ai2, . . . , ai,m+1) ∈ CSi, 1 ≤ i ≤ n

(11)

Assuming the problem has a solution, the CLA for the i-th component is given by

clai = (ai1, ai2, . . . , ai,m+1) (12)

from this solution, and we say that the i-th system component satisfies its CLA
iff the QoS attributes of the component satisfy

attr ij ⊲⊳j aij , if ⊲⊳j∈ {<,≤,≥, >}
attr ij = aij , otherwise (i.e., if ⊲⊳j∈ {=, 6=})

, for all 1≤j≤m. (13)

Remember from Section 4.1 that component configurations that satisfy (13) exist
with probability at least α. We can now introduce the following theorem, whose
proof is provided at http://www-users.cs.york.ac.uk/~simos/DECIDE.

Theorem 2. Let cla1, cla2, . . . , clan be the CLAs (12) of a DECIDE system
with QoS requirements (5). If component i satisfies clai for all 1≤ i≤ n, then
the system QoS requirements are satisfied.

DECIDE does not prescribe how the optimisation problem (11) should be
solved, as this is application specific. Depending on the nature of the DECIDE
system and its requirements, the best way to obtain the component CLAs (12)
may be by using an efficient dynamic programming or greedy algorithm, a meta-
heuristic or, when the solution space CS1×CS2× . . .×CSn is sufficiently small,
by examining all options. The CLA calculation is performed independently by
each system component (using the same deterministic method).

Example 3. Consider again our n-UUV system. The instance of the optimisation
problem (11) solved by the DECIDE module running on each UUV is

minimise
∑n

i=1 ai,3
subject to

∑n
i=1 ai1 ≥ 1000 and

∨

1≤i1<i2≤n (ai12 ∧ ai22) = true

and (ai1, ai2, ai3) ∈ CSi, 1 ≤ i ≤ n
(14)

Our implementation (Section 5) casts this as a multiple-choice knapsack problem
[17] and solves it using an efficient O(n2) dynamic programming algorithm. We
provide this algorithm at http://www-users.cs.york.ac.uk/~simos/DECIDE.

4.4 DECIDE Stage 4: Execution of local control loop

Most of the time, this is the only DECIDE stage being executed. The local
control loop ensures that each component meets its CLA and local requirements
by implementing the RQV-driven approach to developing (single control loop)
self-adaptative software that we co-introduced in [6, 9], summarised in [3], and
extended and used successfully in multiple application domains [4, 5, 15, 16].

The local control loop of component i uses RQV to establish the value of
Mi(e, c) |= Φij in (4), 1≤ j≤mi, either periodically and/or after events associ-
ated with environment or component changes. The aim is to verify if the QoS
attributes of the component continue to satisfy the component CLA (12) and
local requirements (6), and, if this is not the case, to identify a new configuration
that does. The search for such new configurations starts with the configuration
subset Cfgki associated with the component CLA. When no configuration in Cfgki
is suitable, the search is extended to the entire configuration space Cfg i. A com-
ponent that is no longer able to meet its CLA and local requirements is affected
by a “major change”, and its capability summary is recalculated (Section 4.1).
Describing single-control-loop RQV-driven adaptation is outside the scope of
this paper, and we refer the reader to [3] for an overview of the approach.

Example 4. Suppose the CLA selected for the two-sensor UUVi from Example 2
is (193, true, 535). The local control loop will adjust the UUV configuration in
response to changes in the sensor rates ri1, ri2 such that the UUV achieves at
least 193 accurate measurements, has at least an active sensor, and consumes at

spi

Fig. 6: RQV of Φi1– Φi6 from Table 2

most 535J for each 60s of operation. Fig. 6 shows the RQV results when ri2 =
3.68s−1, for the configuration subset Cfg3i = {(spi, 0, 1)|spi ∈ [1, 5]} associated
with this CLA; as sensor 1 is switched off, the value of ri1 is irrelevant. Given
these results, the control loop selects the configuration (spi, x1, x2)= (3.6, 0, 1),
which meets the CLA and local requirements, and minimises the local cost attr i6.

4.5 Major changes
Major changes trigger the execution of other DECIDE stages than the local
control loop, as shown in Figure 1. There are two types of major changes.

A local major change occurs within a component when: (a) the local control
loop cannot find a configuration that satisfies its CLA or local requirements;
(b) failures within the component make certain modes of operation unavailable;
and (c) the capability summary becomes overly conservative, due to a more
favourable environment than anticipated or to recovery from a previous failure.
In these scenarios, the component re-executes the local capability analysis stage.

A peer major change occurs when another component (a) joins the system;
(b) undergoes a local major change; or (c) leaves the system. Component i learns
about peer major changes of types (a) and (b) when it receives a new capability
summary. For the last type of change, DECIDE requires that component failures
are notified by the communication and synchronisation platform underpinning
the interactions between components. This capability is supported by platforms
such as Kevoree [14] and DEECo [2], and can be readily exploited by DECIDE.

5 EVALUATION

Implementation — To evaluate DECIDE, we implemented a fully-fledged sim-
ulator for the multi-UUV self-adaptive system from our running example. We
built our simulator on top of the open-source MOOS-IvP middleware (http:
//oceanai.mit.edu/moos-ivp), a widely used C++ platform for the imple-
mentation of autonomous applications on unmanned marine vehicles [1].

The simulator integrates the standard MOOS-IvP publish-subscribe and vi-
sualisation components with our MOOS component that implements the four
DECIDE stages. Over 90% of our component is new code that implements the
DECIDE local capability analysis, receipt of peer capability summaries, CLA
selection and major change identification within local control loops. The rest
is reused from our previous work on a single-UUV self-adaptive system with a
centralised control loop [15]. The code for our multi-UUV simulator, the experi-
mental results summarised in this section, and a video recording of a typical sim-
ulation are available at http://www-users.cs.york.ac.uk/~simos/DECIDE.

Time (s)

300
400

2000
5 100 1000

1010
1110

1120

UUV 1

UUV 2

UUV 3

1 34

2 34

2 34

1 34

2 34

2 34

1 2 3

1 2 3

1 2 3

4

4

4

4

4

4

4

4

4

4

4

4

system
start-up

major change
(failure)

major change
(recovery)

local control loop, no change local control loop, sensor configuration

Fig. 7: Execution of DECIDE stages 1–4 during major changes and local sensor
changes, and mean CPU and communication overheads for a three-UUV mission

Experimental setup — To evaluate DECIDE, we carried out a broad range of
experiments using our multi-UUV system simulator. The system characteristics
varied in these experiments include the number of UUVs n and UUV sensors ni,
1≤ i≤n, and the confidence level α used to assemble UUV capability summaries.
To examine the impact of different types of failure, the experiments were seeded
with failure patterns including of failures of sensors, sudden significant reductions
in sensor measurement rates (i.e., sensors not meeting their specification) and
failures of entire UUVs. All experiments were carried out on a 2.6GhZ Intel Core
i5 Macbook Pro computer with 16GB memory, running Mac OSX 10.9.

Typical simulation scenario — Fig. 7 shows the execution of the DECIDE stages
during key moments of a simulated 2000s mission carried out by a three-UUV
system. Each UUV had three sensors, and the requirements enforced by DECIDE
were requirements R1–R6 from Section 3. As shown in Fig. 7, the CPU overheads
for the RQV-based local capability analysis and control loop (DECIDE stages 1,
4) and the knapsack problem solving in CLA selection (stage 3) are all negligible
at under 40ms each, or below 0.4% when the local control loop is executed every
10s. The communication overhead, 71 bytes per peer UUV per major change, is
very low too, even for a typical inter-UUV bandwidth of 0.5–5Kbps [23].

Adaptation effectiveness — In all experiments, the system recovered after sen-
sor failures and performance drops, and UUV failures within 800ms from the
moment when the last periodically run local control loop of an UUV started ex-
ecuting, for a typical inter-UUV bandwidth of 2.5Kbps. Thus, if the local control
loop runs every 5s, the time to recovery was below 5.8s.

Adaptation efficiency — To assess the efficiency of the DECIDE self-adaptation
decisions, we compared the number of measurements taken and the energy con-
sumed by the three-UUV DECIDE system with the values of the same metrics
for an “ideal” system (Table 3). In this “ideal” system (a) the sensor rates never
varied from their nominal values; (b) the globally optimal set of sensors satisfy-
ing requirements R1–R6 were used at all times; and (c) all UUVs travelled with
the minimum speed of 1m/s, to maximise the fraction of measurements that
were accurate. This “ideal” system cannot be implemented in practice, but has
the useful property that any practical system will use more measurements and
more energy than it does. Accordingly, the results in Table 3 show that DECIDE
successfully decentralised the control loop of the UUV system with a modest loss
in efficiency compared to any other solution that might be possible.

Role of confidence level α — Higher confidence levels make the component ca-
pability summaries (10) more conservative. This increases the system-level cost
(e.g., the energy use for our system, see Table 3), but reduces the number of
false positives from local control loop checks for major changes, as a fraction of
α of the checks find the component operating in an expected environment state.

Scalability — As shown in Fig. 8, the two RQV-based DECIDE stages (i.e., the
local capability analysis and the local control loop) use the same small amount
of CPU time irrespective of the size of the n-UUV system. The O(n2) CPU time
taken by the CLA selection stage stays below 200ms for systems of up to 32
UUVs. In contrast, using a centralised control loop that applies RQV to the entire
system model M1 ‖ M2 ‖ . . . ‖ Mn takes over 4200s for n = 2 and is unfeasible
for n > 3. The CPU time shown in Fig. 8 for the RQV of a complete model
of a three-UUV system (i.e., 983.5 days) is an estimate we obtained based on
the average verification time over a small subset of representative configurations
from the configuration set that would need to be verified by this control loop.

Threats to validity — We identified several threats to external validity. First, as
we evaluated DECIDE in a single case study, our approach may not be applicable
to other systems because it may not be possible to cast their QoS attributes
and requirements into the pattern given by (4)–(6) in Section 4. To limit this
threat, we distilled this pattern from the growing body of research on RQV-
driven self-adaptation in service-based, cloud-deployed and embedded software
systems [3–6, 9, 11, 15, 16]. Second, for other systems it may not be possible to
identify α-confidence subsets of environment states. This threat is mitigated by
the fact that DECIDE can operate with approximations of such subsets, which
impact only the frequency of major changes. Finally, major changes may occur
too frequently, leading to unacceptable overheads and “jitter” in component
reconfigurations. DECIDE can alleviate this by increasing the α confidence level
(i.e., being more conservative), but our approach is not intended for systems with
a high churn rate. Threats to internal validity originate from how experiments
were performed. To reduce them, we developed our simulator using the well-
established UUV software platform MOOS-IvP, we examined a wide range of
scenarios, and we repeated all experiments many times.

0 5 10 15 20 25 30

number of UUVs

0.01
0.1

1
10

100
1000

10000
100000

1x106
1x107
1x108
1x109

1x1010
1x1011

C
P

U
 u

s
a

g
e

 (
m

s
)

Local capability analysis

Local control loop

CLA selection

Centralised contol loop

Fig. 8: Scalability analysis

Table 3: Comparison of DECIDE
with the “ideal” system (average
results over 10 experiments)

confidence additional additional
level α energy use measurements

0.90 +18.26% +12.54%

0.95 +18.30% +12.58%

0.99 +20.62% +9.97%

6 RELATED WORK

To the best of our knowledge, DECIDE is the first approach to using runtime
quantitative verification (RQV) to decentralise the control loops of self-adaptive
systems. Although RQV has attracted a lot of attention since its recent intro-
duction in [3, 6, 9], the research so far (e.g., [4, 5, 11, 15, 16]) has focused on its
use in centralised control loops. This is feasible only for systems whose stochas-
tic models are small enough to be analysed fast and with acceptable overheads.
Also, for distributed systems such as those in service-based applications [4, 5],
centralised control introduces a single point of failure. DECIDE addresses both
limitations. As all RQV steps analyse component models, our approach extends
the applicability of RQV to larger component-based systems. Also, the use of
RQV in DECIDE does not introduce a single point of failure, since the control
loop of a component continues to operate when a peer component fails.

Decentralised-control self-adaptive systems have been developed using many
other approaches, e.g. as multi-agent [7, 12, 25] and service-based systems [22].
Due to space constraints, we mention here only a few of these approaches, se-
lected as representative for the field. Most of them take adaptation decisions us-
ing optimisation heuristics that cannot provide the strong guarantees required in
mission-critical applications, e.g. bio-inspired [7], market-based [22] and gossip-
style [25] heuristics. In contrast, DECIDE guarantees that the decentralised-
control system meets its QoS requirements in the presence of changes, recovering
from failures whenever feasible. More recent research explored the use of formal
methods to guarantee that decentralised-control self-adaptive systems meet their
functional requirements [8, 12, 26]. Our work complements this research, since
DECIDE focuses on the QoS requirements of distributed self-adaptive systems.

7 CONCLUSION

We presented an approach to using runtime quantitative verification (RQV) to
develop self-adaptive distributed systems with decentralised control loops. RQV-
based decentralised control ensures that distributed systems developed using our
approach continue to meet their QoS requirements after failures and environment
changes. Compared to the current use of a centralised RQV control loop for
the same purpose [3, 4, 6, 9, 11, 15, 16], our new approach achieves this: (a) with
overheads that are several orders of magnitude lower; (b) scalably to much larger
system sizes; (c) without introducing a single point of failure; and (d) with only
a modest increase in system-level costs (18–21% in our case study).

In future work, we will assess the effectiveness of DECIDE in other do-
mains, and examine its scalability for systems with larger component models
(e.g., UUV systems with more sensors per UUV). In addition, we are extending
DECIDE with support for using interface models as component QoS attributes,
with assume-guarantee RQV used to verify system QoS properties as in [16].

Acknowledgments

This paper presents research sponsored by the UK MOD. The information con-
tained in it should not be interpreted as representing the views of the UK MOD,
nor should it be assumed that it reflects any current or future UK MOD policy.

References

1. M. Benjamin et al. Autonomy for unmanned marine vehicles with MOOS-IvP. In
Marine Robot Autonomy, pages 47–90, 2013.

2. T. Bures et al. Deeco: An ensemble-based component system. In CBSE 2013.
3. R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola. Self-adaptive soft-

ware needs quantitative verification at runtime. Comm. ACM 55(9):69–77, 2012.
4. R. Calinescu, L. Grunske, M. Kwiatkowska, et al. Dynamic QoS management and

optimization in service-based systems. IEEE Trans. Softw. Eng. 37:387–409, 2011.
5. R. Calinescu, K. Johnson, and Y. Rafiq. Developing self-verifying service-based

systems. In ASE’13, pages 734–737, 2013.
6. R. Calinescu and M. Z. Kwiatkowska. Using quantitative analysis to implement

autonomic IT systems. In ICSE’09, pages 100–110, 2009.
7. G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos Self-Organization in

Multi-Agent Systems In The Knowledge Eng. Rev., 20(2):165-189, June 2005.
8. N. D’Ippolito et al. Hope for the best, prepare for the worst: Multi-tier control for

adaptive systems. In ICSE’14, pages 688–699, 2014.
9. I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli. Model evolution by run-

time parameter adaptation. In ICSE’09, pages 111–121, 2009.
10. K. Etessami, M. Kwiatkowska, M. Vardi, and M. Yannakakis. Multi-objective

model checking of Markov decision processes. In TACAS’07, pages 50–65, 2007.
11. A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time efficient probabilistic model

checking. In ICSE’11, pages 341–350, 2011.
12. M. Fisher, L. Dennis, and M. Webster. Verifying autonomous systems. Comm.

ACM 56(9):84–93, 2013.
13. V. Forejt, M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Quantitative multi-

objective verification for probabilistic systems. In TACAS’11, pages 112–127, 2011.
14. F. Fouquet et al. Kevoree modeling framework (KMF): Efficient modelling tech-

niques for runtime use. CoRR, abs/1405.6817, 2014.
15. S. Gerasimou, R. Calinescu, A. Banks. Efficient runtime quantitative verification

using caching, lookahead, and nearly-optimal reconfiguration. In SEAMS 2014.
16. K. Johnson, R. Calinescu, and S. Kikuchi. An incremental verification framework

for component-based software systems. In CBSE ’13, pages 33–42, 2013.
17. H. Kellerer, U. Pferschy, and D. Pisinger. The multiple-choice knapsack problem.

In Knapsack Problems, pages 317–347, 2004.
18. J. Kephart, D. Chess. The vision of autonomic computing. Computer 36(1), 2003.
19. M. Kwiatkowska. Quantitative verification: models, techniques and tools. In ESEC-

FSE companion ’07, pages 449–458, 2007.
20. M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: verification of probabilistic

real-time systems. In CAV’11, pages 585–591, 2011.
21. R. Lemos et al. Software engineering for self-adaptive systems: A second research

roadmap. In Software Engineering for Self-Adaptive Systems II, pages 1–32, 2013.
22. V. Nallur and R. Bahsoon. A decentralized self-adaptation mechanism for service-

based applications in the cloud. IEEE Trans. Softw. Eng. 39(5):591–612, 2013.
23. S. Redfield. Cooperation between underwater vehicles. In M. L. Seto, editor,

Marine Robot Autonomy, pages 257–286, 2013.
24. M. Seto, L. Paull, and S. Saeedi. Introduction to autonomy for marine robots. In

Marine Robot Autonomy, pages 1–46, 2013.
25. D. Sykes, J. Magee, and J. Kramer. Flashmob: Distributed adaptive self-assembly.

In SEAMS ’11, pages 100–109, 2011.
26. D. Weyns et al. FORMS: Unifying Reference Model for Formal Specification of

Distributed Self-Adaptive Systems. ACM Trans. Aut. Adapt. Syst. 7(1), 2012.

