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Abstract. South Asia is a region with a large and rising pop-

ulation, a high dependence on water intense industries, such

as agriculture and a highly variable climate. In recent years,

fears over the changing Asian summer monsoon (ASM) and

rapidly retreating glaciers together with increasing demands

for water resources have caused concern over the reliability

of water resources and the potential impact on intensely ir-

rigated crops in this region. Despite these concerns, there is

a lack of climate simulations with a high enough resolution

to capture the complex orography, and water resource analy-

sis is limited by a lack of observations of the water cycle for

the region. In this paper we present the first 25 km resolution

regional climate projections of river flow for the South Asia

region. Two global climate models (GCMs), which represent

the ASM reasonably well are downscaled (1960–2100) using

a regional climate model (RCM). In the absence of robust ob-

servations, ERA-Interim reanalysis is also downscaled pro-

viding a constrained estimate of the water balance for the

region for comparison against the GCMs (1990–2006). The

RCM river flow is routed using a river-routing model to allow

analysis of present-day and future river flows through com-

parison with available river gauge observations. We examine

how useful these simulations are for understanding poten-

tial changes in water resources for the South Asia region. In

general the downscaled GCMs capture the seasonality of the

river flows but overestimate the maximum river flows com-

pared to the observations probably due to a positive rainfall

bias and a lack of abstraction in the model. The simulations

suggest an increasing trend in annual mean river flows for

some of the river gauges in this analysis, in some cases al-

most doubling by the end of the century. The future maxi-

mum river-flow rates still occur during the ASM period, with

a magnitude in some cases, greater than the present-day nat-

ural variability. Increases in river flow could mean additional

water resources for irrigation, the largest usage of water in

this region, but has implications in terms of inundation risk.

These projected increases could be more than countered by

changes in demand due to depleted groundwater, increases

in domestic use or expansion of water intense industries. In-

cluding missing hydrological processes in the model would

make these projections more robust but could also change the

sign of the projections.

1 Introduction

South Asia, the Indo-Gangetic Plain in particular, is a re-

gion of rapid socio-economic change where both popula-

tion growth and climate change is expected to have a large

impact on available water resources and food security. The

region is home to almost 1.6 billion people and the popula-

tion is forecast to increase to more than 2 billion by 2050

(United Nations, 2013). The economy of this region is ru-

ral and highly dependant on climate sensitive sectors such as

the agricultural and horticultural industry, characterised by a

large demand for water resources. As a result, over the com-

ing decades, the demand for water from all sectors; domes-

tic, agricultural and industrial is likely to increase (Gupta and

Deshpande, 2004; Kumar et al., 2005).

The climate of South Asia is dominated by the Asian

summer monsoon (ASM), with much of the water resources

across the region provided by this climatological phenom-

ena during the months of June–September (Goswami and

Xavier, 2005). The contribution from glacial melt to water
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resources is less certain but likely to be important outside the

ASM period during periods of low river flow (Mathison et al.,

2013). Glaciers and seasonal snowpacks are natural hydro-

logical buffers releasing water during the drier periods, such

as spring and autumn, when the flows of some catchments

in this region are at their lowest. Similarly they may act to

buffer inter-annual variability as well releasing water during

warmer drier years and accumulating during wetter colder

years (Barnett et al., 2005). However, Kaser et al. (2010)

showed that the influence of glacial melt reduces with dis-

tance downstream, as other influences such as evaporation

and precipitation increase in importance. Immerzeel et al.

(2010) found that by the 2050s, the main upstream water

supply could decrease due to a reduction in snow and glacial

melt (reductions of 8 % for the upper Indus and more than

18 % for the Ganges and Brahmaputra). Meltwater plays an

important role for the Indus and Brahmaputra particularly,

accounting for a larger percentage of the downstream flow

than the Ganges (where meltwater is approximately 10 %

of the downstream flow). However, Immerzeel et al. (2010)

also showed that these reductions in meltwater are offset by

an increase in precipitation in all three basins. Immerzeel

et al. (2010) used coarse-resolution general circulation mod-

els (GCMs) known to have difficulties in capturing monsoon

precipitation and in estimating the relationship between daily

mean temperature and melting of snow and ice.

Recent studies have highlighted uncertainty in both glacier

mass balance and ASM rainfall. Fujita and Nuimura (2011)

showed a negative mass balance for three benchmark glaciers

in the Nepal Himalayas. Bolch et al. (2012) and Gardelle

et al. (2013) highlighted losses more generally from west-

ern, eastern and central Himalayan glaciers. These observed

changes in Himalayan glaciers can be attributed to the in-

crease in temperature already experienced across the region,

with warming more pronounced at higher elevations and dur-

ing winter months (Shrestha and Aryal, 2011). There are

however some glaciers in the Karakoram region showing in-

creases in mass, which has been attributed to a decrease in

temperature for this region (Bolch et al., 2012; Gardelle et al.,

2013). Projections of future glacial change are challenging

due to poor understanding of glacial processes, diversity in

climate extremes and the complex orography of the region

(Bolch et al., 2012). Complex orography contributes to other

processes such as avalanching and therefore debris cover.

The relationship between debris cover and melt is complex

with a wide variety of responses across different glaciers

across the Himalayan arc (Gardelle et al., 2013). The thick-

ness of debris cover is widely thought to significantly affect

the response of the glacier to climate, with thick debris cover

tending to slow down surface melting (Bolch et al., 2012;

Scherler et al., 2011). However, on the regional scale Kääb

et al. (2012) found, using satellite data, similar thinning rates

between clean and debris covered ice despite insulation by

debris cover at some sites. Kääb et al. (2012) suggested that

the insulating effect of debris layers with thicknesses exceed-

ing a few centimetres depends on the continuity of the cov-

erage. Therefore, changes in the thickness of debris across a

glacier could change the melt rate on a local scale even across

a single glacier tongue.

The ASM is also uncertain, Christensen et al. (2007) high-

lighted two climate features that could influence the ASM,

including a general weakening of monsoonal flows while en-

hanced moisture convergence could increase precipitation.

Any reduction in water availability from either resource is

likely to put more pressure on groundwater resources, which

is not sustainable in the longer term (Rodell et al., 2009).

There is some disagreement in the literature regarding the

main effects of climate change on this region. Gregory et al.

(2005) suggested that the availability and quality of ground-

water for irrigation could be more important factors influenc-

ing food security than the direct effects of climate change,

particularly for India. However, Aggarwal et al. (2012) sug-

gested that an increase in extremes (both temperature and

precipitation) could lead to instability in food production and

it is this variability in food production that is potentially the

most significant effect of climate change for the South Asia

region.

Despite the general uncertainty in the reliability of wa-

ter resources and the impacts of climate change for this re-

gion, there are few simulations available with a high enough

resolution for capturing the complex topography of the Hi-

malayan region. The water balance for the South Asia re-

gion as a whole is generally poorly understood with limited

observing networks and data availability for both precipi-

tation and river flows presenting a real challenge for vali-

dating models and estimates of water balance. This analy-

sis seeks to use regional climate simulations to develop our

understanding of the water cycle for the region in the con-

text of the complete climate system, while acknowledging

that more needs to be done to address the missing hydrolog-

ical processes in the model. Regional climate model (RCM)

simulations are a widely used method across climate science

for downscaling GCMs, including the regional IPCC assess-

ment but are used in many other regional climate projects

(Christensen et al., 2007; Murphy et al., 2009; Jacob et al.,

2007). RCMs are based on the same physical equations as

GCMs and therefore represent the entire climate system in-

cluding the carbon and water cycle. Though there are some

limitations due to missing processes, their higher resolution

allows a better representation of the regional-scale processes;

especially in regions of complex topography such as the Hi-

malayas (Lucas-Picher et al., 2011). RCMs are designed to

maintain the conservation of water, mass, energy and mo-

mentum, essential for analysis on climate timescales. Lucas-

Picher et al. (2011) conducted a comprehensive assessment

of four RCMs run over South Asia demonstrating their abil-

ity to capture the monsoon; this analysis includes the RCM

used here. Mathison et al. (2013) compared GCM and RCM

outputs for temperature and precipitation specifically for the

RCM used in this analysis.
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Perhaps due to the lack of adequate resolution regional

climate simulations available for this region, there are rela-

tively few studies that consider the value of downscaling us-

ing RCMs for hydrological applications for this region. How-

ever, Akhtar et al. (2008) found that RCM data produced bet-

ter results when used with a hydrological model than using

poor-quality observation data; this implies greater confidence

in the RCM simulated meteorology than available observa-

tional data for this region (Wiltshire, 2014). Therefore, in

the literature hydrological analysis is typically at the global

scale using GCMs coupled with hydrological models (Milly

et al., 2005; Hirabayashi et al., 2008; Falloon et al., 2011;

Wiltshire et al., 2013a, b) or at the basin scale using stand-

alone hydrological models (Singh and Kumar, 1997; Singh

and Bengtsson, 2005; Singh et al., 2008; Seidel et al., 2000)

such as the soil water assessment tool (SWAT; Arnold et al.,

1998). Weather data in SWAT are either simulated within the

model using a weather generator or taken from observations

of daily precipitation and maximum/minimum temperature

(Nyeko, 2015). This approach may be appropriate for small

domains within which there is consistency in rainfall pat-

terns but may not be suitable for large domains in South Asia

due to the high temporal and spatial variability in precipi-

tation across the region (Hijioka et al., 2014). Gosain et al.

(2006) used the SWAT model with 50 km resolution daily

RCM weather data to conduct a climate change impact as-

sessment of the hydrology of several individual basins over

India for two 20-year periods representing the present day

(1981–2000) and future (2041–2060). Gosain et al. (2006)

compared the differences between the two periods, rather

than focussing on absolute values, to find that climate change

causes an increase in precipitation, river flow and evaporation

for the Ganges basin. High variability across basins and sub-

basins means that parts of the Ganges basin could experience

seasonal or regular water-stressed conditions under climate

change (Gosain et al., 2006), although it is not exactly clear

which climate change scenario has been used for these simu-

lations. There are more examples of the application of RCMs

for hydrological analysis for other regions such as the UK

and Europe. Kay et al. (2006) used 25 km RCM data in a

catchment-based rainfall–runoff model to estimate the flood

frequency of small UK river basins to good effect. Dankers

et al. (2007) used an RCM to evaluate the benefits of using

high spatial resolution climate information for the Danube

basin. Sampson et al. (2014) have also demonstrated the im-

portance of the resolution of precipitation data for a region

of Ireland for hydrological impact modelling.

The typical domain and resolution of RCM simulations

enables the analysis of areas spanning multiple river basins

covering a larger area than is usually possible with hydro-

logical models. This means that there is consistent forcing

across different basins. The use of the RCM generated runoff

within the hydrological model also preserves the consistency

of the projections with atmospheric forcing, which is not pos-

sible if the runoff is derived within a hydrological model.

However, there are few regional river-flow analyses currently

available, where these consistencies are maintained. Biemans

et al. (2013) analysed the RCM projections used in this anal-

ysis in terms of water availability for food production for se-

lected river basins using a coupled hydrology and dynamic

vegetation model; however, so far no specific analysis of river

flows has been done for these RCMs. Therefore, we present

the first 25 km resolution regional climate projections of river

flow for the South Asia region by using RCM generated

runoff within a routing model to estimate river flow thereby

enabling consistency to be maintained across basins and with

the driving climate scenario. This is a new application of the

highest resolution RCM data currently available for this re-

gion, to enable analysis of the impacts of climate on river

flows in conjunction with the strategic sampling of climate

variability from selected GCMs. We use a novel approach to

the consideration of variability of river flows through analy-

sis of the upper and lower parts of the distribution, in addition

to the mean flows.

The aim of this analysis is to examine how useful RCM

simulations are for understanding how river flows could

change in South Asia in the future. Irrigation is an impor-

tant part of the agricultural industry for this part of the world,

with the Indo-Gangetic Plain traditionally providing the sta-

ple crops of rice and wheat (Aggarwal et al., 2000) for India

and South Asia as a whole; the continued success of these

crops is therefore important for the food and water security of

the region. We discuss the potential implications of projected

changes in the water resources needed to maintain yields

of these crops in a changing climate. The models, observa-

tions and the analysis used are described in Sect. 2, while a

brief evaluation of the driving data and the river flow analy-

sis is presented in Sect. 3. The implications of the potential

changes in river flows on water resources and conclusions are

discussed in Sects. 4 and 5, respectively.

2 Methodology

2.1 Models

Figure 1 summarises the methodology described in this sec-

tion in a flow chart, highlighting the main stages in the gener-

ation of the presented river-flow projections and the approx-

imate resolution of the model data used.

2.1.1 GCM and RCM forcing

This analysis utilizes 25 km resolution regional climate mod-

elling of the Indian sub-continent to provide simulations

across the Hindu–Kush Karakoram Himalaya mountain belt.

These RCM simulations form part of the ensemble produced

for the EU-HighNoon project (referred to hereafter as HN-

RCMs), for the whole of the Indian subcontinent (25◦ N,

79◦ E–32◦ N, 88◦ E), for the period 1960–2100. The other

simulations in the HighNoon ensemble, which used another
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Figure 1. A flow chart showing the methodology for the presented analysis.

RCM, the Regional Model from the Max Planck Institute for

Meteorology (REMO; Jacob et al., 2007), were unavailable

for use in this analysis. Therefore, one RCM, the Hadley

Centre Regional Climate Model (HadRM3) RCM (Jones

et al., 2004) is used to generate the river-flow projections

presented here. While the additional RCM would be use-

ful here, analysis of the ERA-Interim driven HadRM3 and

REMO simulations over the western Himalayas by Dimri

et al. (2013) show that both models run at 25 km resolu-

tion over comparable domains have similar distributions of

precipitation, temperature and inter-annual variability, de-

spite having different representations of orography. Analy-

sis of the complete HighNoon ensemble for the Ganges–

Brahmaputra basin in Mathison et al. (2013) also indicates

a small spread between HNRCMs for the 30-year mean cli-

matologies of temperature. Precipitation is more variable for

this basin, with a larger spread between HNRCMs. However,

the RCM uncertainty defined by these two models (REMO

and HadRM3) is still smaller than the climate uncertainty

represented by the selected GCMs with the influence of the

GCM on the projections of precipitation as great as the vari-

ability between RCMs (Kumar et al., 2013). Therefore, the

most important contribution to the input uncertainty is from

the GCM (Akhtar et al., 2008) and using two GCMs to pro-

vide boundary data to one RCM provides a better estimate of

climate uncertainty than using a single GCM to drive two

RCMs, which would be the computational equivalent. On

this basis we use HadRM3 driven by two carefully selected

GCMs for this analysis. However, other RCMs, not yet ap-

plied to this region could produce different projections.

In order to sample climate uncertainty, we use two GCM

simulations that have been shown to capture a range of tem-

peratures and variability in precipitation similar to the AR4

ensemble for Asia (Christensen et al., 2007). Although us-

ing just two ensemble members is unlikely to capture the full

range of uncertainty of a larger ensemble, the two models

used for these simulations have been shown to capture the

main features of the large-scale circulation (particularly the

ASM) (Kumar et al., 2013; Annamalai et al., 2007; Mathi-

son et al., 2013), which is not true of all GCMs. The exper-

imental design of the HighNoon ensemble compromises be-

tween the need for higher-resolution climate information for

the region and the need for a number of ensemble members to

provide a range of uncertainty. The length of the simulations

needed and the limited number of GCMs that are able to sim-

ulate the ASM also affect the number of ensemble members.

These factors are all important given the limited computa-

tional resources available. The GCMs are the following: the

third version of the Met Office Hadley Centre Climate Model

(HadCM3; Pope et al., 2000; Gordon et al., 2000, a version

of the Met Office Unified Model) and ECHAM5 (third re-

alization; Roeckner et al., 2003) are downscaled using the

HadRM3 RCM (Jones et al., 2004). These two GCMs cap-

ture the uncertainty in the sign of the projected change in pre-

cipitation with one showing an increase (HadCM3) and the

other a decrease (ECHAM5). This feature is a key reason for

the selection of these two GCMs. In addition to the GCMs,

ERA-Interim data (Simmons et al., 2007; Dee et al., 2011)

are also downscaled using the HadRM3 RCM. ERA-Interim

is a reanalysis product that combines model and observations

to provide a constrained estimate of the water balance of the

region. The ERA-Interim (also referred to as ERAint) simu-

lation has also been shown to capture the role of steep topog-

raphy on moisture transport fluxes and vertical flow for the

western Himalayas (Dimri et al., 2013). Therefore, for this

region, where there is a lack of robust observations, particu-
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larly of the water cycle (see Sects. 2.3.1 and 3.1), it provides a

useful benchmark against which to compare the GCM driven

simulations. A similar approach is described in a previous

study by Wiltshire (2014).

These RCM simulations are currently the finest resolution

climate modelling available for this region (Mathison et al.,

2013; Moors et al., 2011; Kumar et al., 2013). HadRM3 has

19 atmospheric levels and the lateral atmospheric boundary

conditions are updated 3 hourly and interpolated to a 150 s

time step. These simulations include a detailed representa-

tion of the land surface in the form of version 2.2 of the

Met Office Surface Exchange Scheme (MOSESv2.2; Essery

et al., 2003), which includes a full physical energy-balance

snow model (Lucas-Picher et al., 2011). MOSESv2.2 treats

subgrid land cover heterogeneity explicitly with separate sur-

face temperatures, radiative fluxes (long wave and short-

wave), heat fluxes (sensible, latent and ground), canopy

moisture contents, snow masses and snowmelt rates com-

puted for each surface type in a grid box (Essery et al.,

2001). However, the air temperature, humidity and wind

speed above the surface are treated as homogenous across

the grid box and precipitation is applied uniformly over the

different surface types of each grid box. The relationship be-

tween the precipitation and the generation of runoff is com-

plicated, depending on not only the intensity, duration and

distribution of the rainfall but also the characteristics of the

surface. The infiltration capacity of the soil, the vegetation

cover, steepness of the orography within the catchment and

the size of the catchment are important influencing factors on

runoff generation (Linsley et al., 1982). In GCMs and even

25 km RCMs such as the one presented here, the resolution

is often too coarse to explicitly model the large variations of

soil moisture and runoff within a catchment and therefore the

major processes are parameterized (Gedney and Cox, 2003).

The method used within MOSES2.2 for generating surface

and subsurface runoff across a grid box is through partition-

ing the precipitation into interception by vegetation canopies,

throughfall, runoff and infiltration for each surface type (Es-

sery et al., 2003). The Dolman and Gregory (1992) infil-

tration excess mechanism generates surface runoff; this as-

sumes an exponential distribution of point rainfall rate across

the fraction of the catchment where it is raining (Clark and

Gedney, 2008). Moisture fluxes are allowed between soil lay-

ers; these are calculated using the Darcy equation, with the

water going into the top layer defined by the grid-box aver-

age and any excess removed by lateral flow (Essery et al.,

2001). Excess moisture in the bottom soil layer drains from

the bottom of the soil column at a rate equal to the hydraulic

conductivity of the bottom layer as subsurface runoff (Clark

and Gedney, 2008). The performance of MOSESv2.2 is dis-

cussed in the context of a GCM in Essery et al. (2001); how-

ever, no formal assessment of MOSESv2.2 and the runoff

generation in particular has been done for the RCM.

2.1.2 River-routing model

In this analysis the simulated 25 km grid-box runoff is con-

verted into river flow using the 0.5◦ Total Runoff Integrating

Pathways river-routing scheme (TRIP; Oki and Sud, 1998)

as a post-processing step. TRIP is a simple model that moves

water along a pre-defined 0.5◦ river network; the Simulated

Topological Network at 30 min resolution (STN-30p, ver-

sion 6.01; Vörösmarty et al., 2000a, b; Fekete et al., 2001)

in order to provide mean runoff per unit area of the basin;

this can be compared directly with river gauge observations.

TRIP was previously used in Falloon et al. (2011), which

used GCM outputs directly to assess the skill of a global

river-routing scheme. The TRIP model has been shown to

agree well with observed river-flow gauge data (Oki et al.,

1999) and largely showed good skill when comparing runoff

from several land-surface models (Morse et al., 2009). Imple-

mentation of TRIP in two GCMs, HadCM3 and HadGEM1,

is described by Falloon et al. (2007) and was found to im-

prove the seasonality of the river flows into the ocean for

most of the major rivers. Using TRIP ensures the river-flow

forcing is consistent with the atmospheric forcing; however,

it also assumes that all runoff is routed to the river network

and as such there is no net aquifer recharge/discharge. This

may not be the case in regions with significant groundwa-

ter extraction, which is subsequently lost though evapora-

tion and transported out of the basin. These simulations do

not include representation of extraction, reservoirs or dams.

Many of the river gauges used in this analysis and described

in Sect. 2.2 are located at large dams along rivers in these

basins, and therefore the comparison between the simula-

tions and the river gauges could be affected by these large

features. Extraction, particularly for irrigation purposes, is

large in this region (Biemans et al., 2013); this means that

the extraction–evaporation, as well as subsequent recycling,

of water in a catchment (Harding et al., 2013; Tuinenburg

et al., 2014) is not considered in this analysis. The routed

runoff of the HNRCM simulations are generally referred to

hereafter using only the global driving data abbreviations:

ERAint, ECHAM5 and HadCM3 (except Sect. 3.1 where

we refer to the HadCM3 GCM and ERAint data sets before

downscaling).

2.1.3 Emission scenario

These simulations use the Special Report on Emissions Sce-

narios (SRES) A1B scenario (Nakicenovic et al., 2000). The

SRES scenarios were devised according to the production

of greenhouse gases and aerosol precursor emissions as part

of the AR4 IPCC report (Christensen et al., 2007). The A1

storyline and scenario family represents a future world of

very rapid economic growth, global population that peaks in

mid-century and declines thereafter, and rapid introduction

of new and more efficient technologies. The A1B scenario

specifically, represents this future world where there is bal-
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Figure 2. A map showing the locations of the river gauges used in this analysis.

ance across energy sources, i.e. a mixture of fossil and non-

fossil fuels (Nakicenovic et al., 2000). This scenario does not

represent changes in land use, which remains fixed through

the duration of these simulations. This is useful for under-

standing the effect of climate change in the absence of any

adaptation.

2.2 Observations

This analysis uses observations of precipitation and river

flow to assess the present-day RCM hydrology. The precipi-

tation observations are from the Asian Precipitation – Highly

Resolved Observational Data Integration Towards the Eval-

uation of Water Resources (APHRODITE; Yatagai et al.,

2012) data set. APHRODITE is a daily, 0.25◦ resolution grid-

ded data set.

The river-flow analysis focusses on a selection of river

gauges from the Global Runoff Data Centre (GRDC, 2014)

that are located within the three major river basins of South

Asia: the Indus and the Ganges–Brahmaputra. These gauges

provide observations that are used, in addition to downscaled

ERA-Interim river flows, to evaluate the downscaled GCM

river flows. The selection of these river gauges aims to il-

lustrate from the perspective of river flows, as modelled in

an RCM, that the influence of the ASM on precipitation to-

tals increases, from west to east and north to south across

the Himalayan mountain range, while that of western dis-

turbances reduces (Wiltshire, 2014; Dimri et al., 2013; Ri-

dley et al., 2013; Collins et al., 2013). The differing influ-

ences across the Himalayan arc result in complex regional

differences in sensitivity to climate change, with western re-

gions dominated by non-monsoonal winter precipitation and

therefore potentially less susceptible to reductions in annual

snowfall (Wiltshire, 2014; Kapnick et al., 2014). A brief ge-

ographical description of the rivers and the chosen gauges is

given in this section, their locations are shown in Fig. 2 and

listed in Table 1 (including the abbreviations shown in Fig. 2

and the gauge location in terms of latitude and longitude).

The Indus, originates at an elevation of more than 5000 m

in western Tibet on the northern slopes of the Himalayas,

flowing through the mountainous regions of India and Pak-

istan to the west of the Himalayas. The upper part of the

Indus basin is greatly influenced by western disturbances,

which contribute late winter snowfall to the largest glaciers

and snow fields outside the polar regions; the meltwater from

these have a crucial role in defining the water resources of the

Indus basin (Wescoat Jr., 1991). In this analysis the Attock

gauge is the furthest upstream and the Kotri gauge, located

further downstream, provide observations on the main trunk

of the Indus River. The Chenab River, located in the Panjnad

basin and in this analysis represented by the Panjnad gauge,

is a major eastern tributary of the Indus, originating in the

Indian state of Himachal Pradesh. In the upper parts of the

Chenab sub-basin western disturbances contribute consider-

ably to precipitation, while the foothills are also influenced

by the ASM (Wescoat Jr., 1991).

The Ganges River originates on southern slopes of the

Himalayas (Thenkabail et al., 2005) and traverses thou-

sands of kilometres before joining with the Brahmaputra in

Bangladesh and emptying into the Bay of Bengal (Mirza

et al., 1998). The Ganges basin has a population density

10 times the global average making it the most populated
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Table 1. Table listing the rivers and gauges (including their location) used in this analysis; all the observations shown here are from GRDC.

The abbreviations used in Fig. 2 are given in column one. The years of data column includes the number of years that data is available

since 1950 with “c” to denote where data are continuous and “u” to show where the data are available for that number of years but not as a

continuous data set.

Map River name Gauge name Latitude Longitude Years of data

abbreviation

IND_KOT Indus Kotri 25.37 68.37 14u (1950–1978)

IND_ATT Indus Attock 33.9 72.25 6c (1973–1979)

CHE_PAN Chenab Panjnad 29.35 71.03 6c (1973–1979)

BHA_TEH Bhagirathi Tehri dam 30.4 78.5 3c (2001–2004)

KAR_BEN Karnali River Benighat 28.96 81.12 25u (1963–1993)

KAR_CHI Karnali River Chisapani 28.64 81.29 31c (1962–1993)

NAR_DEV Narayani Devghat 27.71 84.43 23u (1963–1993)

ARU_TUR Arun Turkeghat 27.33 87.19 10c (1976–1986)

GAN_FAR Ganges Farakka 25.0 87.92 18u (1950–1973)

BRA_BAH Brahmaputra Bahadurabad 25.18 89.67 12u (1969–1992)

BRA_YAN Brahmaputra Yangcun 29.28 91.88 21u (1956–1982)

BRA_PAN Brahmaputra Pandu 26.13 91.7 13u (1956–1979)

river basin in the world (Johnston and Smakhtin, 2014), it

covers 1.09 million km2 with 79 % in India, 13 % in Nepal,

4 % in Bangladesh and 4 % in China (Harding et al., 2013).

The main trunk of the Ganges is represented in this analysis

by the gauge at the Farakka Barrage, located at the India–

Bangladeshi border, to the east of the Himalayas. The Bha-

girathi River, located in the upper Ganga basin, is one of

the main head streams of the Ganges. The Bhagirathi River

originates from Gaumukh 3920 m a.s.l. at the terminus of

the Gangotri glacier in Uttarakhand, India (Bajracharya and

Shrestha, 2011). The Tehri dam is located on this tributary,

providing the most central data point on the Himalayan arc

in this analysis (not a GRDC gauge).

The Karnali River (also known as Ghaghara), drains from

the Himalayas originating in Nepal flowing across the bor-

der to India where it drains into the Ganges. The Karnali

is the largest river in Nepal and a major tributary of the

Ganges (Bajracharya and Shrestha, 2011) accounting for ap-

proximately 11 % of the Ganges discharge, 5 % of its area

and 12 % of its snowfall in the HNRCMs. Two of the river

gauges in this analysis, the Benighat and the Chisapani, are

located on this river. Two other sub-catchments complete

those covering the Ganges basin; the Narayani and the Arun

rivers. The Narayani River (also known as the Gandaki River,

represented here by the Devghat river gauge) is reportedly

very dependant on glaciers at low flow times of the year

with over 1700 glaciers covering more than 2200 km2 (Ba-

jracharya and Shrestha, 2011). The Arun River, part of the

Koshi river basin originates in Tibet, flows south through the

Himalayas to Nepal. The Arun, represented in this analysis

by the Turkeghat gauge, joins the Koshi river, which flows in

a south-west direction as a tributary of the Ganges.

The Brahmaputra originates from the glaciers of Mount

Kailash at more than 5000 m a.s.l., on the northern side of

the Himalayas in Tibet flowing into India, and Bangladesh

before merging with the Padma in the Ganges Delta. The

Brahmaputra is prone to flooding due to its surrounding

orography and the amount of rainfall the catchment receives

(Dhar and Nandargi, 2000). The Brahmaputra is represented

in this analysis by three gauges: Yangcun, the highest up-

stream gauge, Pandu in the middle and Bahadurabad furthest

downstream but above the merge with the Padma.

There are no known observation errors for the GRDC ob-

servations (personal communication, GRDC). Estimates of

observation errors for river gauges vary in the literature with

a recommendation in Falloon et al. (2011) for GCMs to be

consistently within 20 % of the observations, while Oki et al.

(1999) suggest that errors of 5 % at the 95 % confidence in-

terval might be expected. McMillan et al. (2010) proposed

a method for quantifying the uncertainty in river discharge

measurements by defining confidence bounds. In this anal-

ysis, these methods are hindered by the lack of observa-

tions concurrent with the model simulations. Therefore, the

method for approximating the inter-annual variability in this

analysis is based on the model variability and is described in

Sect. 2.3.

2.3 Methods

There are two stages to the analysis presented, comparison

of the simulations with observations (for both RCM precip-

itation and river flows) and analysis of future climate. The

comparison against observations aims to assess if the RCM

reproduces the regional hydrology in terms of precipitation

and river flow compared with available observations. The

objective of the analysis of future climate is to understand

how these simulations compare against the present-day high

and low flows, i.e. present-day natural variability. In this

section we describe the methods used in each stage of the
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analysis; the comparison against observations is described in

Sect. 2.3.1 and the analysis of future river flows in Sect. 2.3.2.

2.3.1 Comparison against observations

The total precipitation from each of the downscaled GCM

simulations are compared against a downscaled ERA-Interim

simulation and APHRODITE observations. This compari-

son is on the basin scale, focussing on the basins included

in the river-flow analysis (see Sect. 2.2): the Indus and the

Ganges–Brahmaputra. The TRIP model basin boundaries for

each of these basins are shown in Fig. 4. The Ganges and

Brahmaputra catchments are considered together in this anal-

ysis as these rivers join together in the Ganges Delta and are

not clearly delineated in TRIP (see Fig. 4b). The precipita-

tion patterns for each basin are useful for understanding the

changes in the river flows within the catchments although

rain gauges in the APHRODITE data set are particularly

sparse at higher elevations (see Yatagai et al., 2012, Fig. 1).

This leads to underestimation of the basin wide water bud-

gets particularly for mountainous regions (Andermann et al.,

2011). This is confirmed by Immerzeel et al. (2015) for the

Indus basin where they find a high altitude precipitation of up

to 10 times higher than current gridded data sets is needed to

close the water balance for this basin. We compare the ob-

servations and simulations in terms of their annual time se-

ries and the climatology for each basin. The climatologies

are calculated using the 1971–2000 period for HadCM3 and

ECHAM5 and 1990–2006 for the ERAint simulation in or-

der to capture a typical seasonal cycle for each simulation

and basin.

This analysis is repeated for river flows in Sect. 3.2 for

each of the 12 gauges described in Sect. 2.2. We also cal-

culate the 1.5 SD (standard deviation) over a 30-year period

to define the inter-annual variability. A value of plus 1.5 SD

indicates an ∼ 1 in 10-year wet event, and a value of mi-

nus 1.5 SD indicates a 1 in 10-year dry event. This approach

is taken to indicate the possible impact of such a change

under the hypothesis that current socio-economic levels of

climate adaptation can cope with a 1 in 10-year event. The

change driving mechanism could be anthropogenic climate

or decadal variability. This assumes that inter-annual vari-

ability is independent of climate change whether that is due

to decadal variability or externally forced change. In this con-

text it is indicative of the timing and magnitude of possi-

ble changes under the A1B emissions scenario. More work

and ensemble members would be required to control the role

of decadal variability while the substantial computation ex-

pense in running high-resolution RCM experiments currently

precludes the use of initial condition ensembles.

2.3.2 Future analysis

In Sect. 3.3 we use the annual time series of the whole simu-

lation period to highlight any trends in future precipitation,

evaporation (at the basin scale) and river flows (for each

gauge) over the century. We also calculate the climatologies

for two future 30-year periods: 2040–2070 (referred to as

the 2050s) and 2068–2098 (referred to as the 2080s). The

monthly climatology for the two periods is compared against

the 1971–2000 range of natural variability. The purpose of

the climatology analysis is twofold. The first objective is to

establish if there is any change in the seasonality of the river

flow. The second objective is to establish if there is any in-

crease in the future 30-year-mean river flows that is outside

the present-day variability, thereby indicating an increase in

future events that are equivalent to the 1971–2000 1 in 10-

year wet (dry) events (see Sect. 3.3.1).

Analysis of the 30-year mean is useful for understanding

the general climatology of the region, but often it is the pe-

riods of high and low river flow that are critical in terms of

water resources. Mathison et al. (2013) highlighted the im-

portance of potential changes in the seasonal maximum and

minimum river flows for the agricultural sector. The analy-

sis in Sect. 3.3.2 uses kernel density estimation (KDE; Scott,

2009; Silverman, 1986) to calculate the probability density

functions (pdfs) of the river flows for each river gauge and

30-year period. The main aim of this analysis is to establish

if there is any change in the distribution of the highest and

lowest river flows for the 2050s and 2080s compared with

the 1971–2000 period (see Sect. 3.3.2). Given these distribu-

tions, we then attempt to quantify the changes in the highest

and lowest river flows for the two future periods by focussing

on the changes in the lowest and highest 10 % of flows using

two different approaches. In the first approach, in Sect. 3.3.3,

we apply the upper and lower 10 % of river flows for the

1971–2000 period as thresholds for the 2050s and 2080s. In

Sect. 3.3.4, we take the principle of the threshold analysis

one step further by calculating the 10th and 90th percentile

thresholds for each decade, simulation and gauge. The aim

of this second approach is to establish if there is any system-

atic change in the upper and lower parts of the distribution

through the century.

3 Results

The results are divided into three sections. Precipitation has

a key influence on river flows; therefore, in Sect. 3.1 we

consider the previous evaluation of the HNRCM simula-

tions comparing the RCM precipitation for major South Asia

basins with observations and ERAint. In Sect. 3.2 we focus

on river flows themselves for 12 gauges within these basins

distributed across the Himalayan arc. The methods used in

Sect. 3.1 and 3.2 are described in Sect. 2.3.1. In Sect. 3.3 we

analyse the future projections of precipitation, evaporation

and river flow to understand the water cycle of the region

(see Sect. 2.3.2 for the methods used).
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3.1 Comparison of present-day driving data with

observations

The HNRCM simulations have been evaluated in several pre-

vious publications. Lucas-Picher et al. (2011) evaluated the

ability of RCMs to capture the ASM using ERA-40 data. Ku-

mar et al. (2013) analysed the HNRCMs forced with ERA-

Interim data. The GCM and HNRCM simulations are also

evaluated against a range of observations for the Ganges–

Brahmaputra river basin in Mathison et al. (2013). Figure 3

shows the observed spatial distribution of total precipita-

tion for the monsoon period (June to September; Goswami

and Xavier, 2005) together with the HadCM3 and ERAint

prior to and post-downscaling. The HNRCMs (Fig. 3d and e)

improve the spatial distribution of precipitation and there-

fore compare well with the observations shown in Fig. 3c.

This is highlighted by the additional detail shown in the pre-

cipitation fields through comparison of the pre-downscaled

data sets for the HadCM3 GCM (Fig. 3a) with those down-

scaled using HadRM3 (Fig. 3e). This comparison is also

possible for the downscaled ERA-Interim reanalysis data set

shown in Fig. 3d, which also shows an improved precipita-

tion representation compared with the pre-downscaled data

set (Fig. 3b). The higher-resolution orography used in the

25 km RCMs is more able than the much coarser-resolution

data sets to capture the particularly varied terrain of this

region and the effects of this on the precipitation distribu-

tion. In general the HNRCM simulations capture the spatial

characteristics of the ASM, successfully reproducing regions

of high convective precipitation, maximum land rainfall and

the rain shadow over the east coast of India (Kumar et al.,

2013). Through adequately representing the spatial precip-

itation characteristics across the region, the areas of maxi-

mum and minimum precipitation can have a direct impact on

the river flows for the appropriate basin. This is shown by

the improvement in the timing and magnitude of the maxi-

mum precipitation for the RCM (HadRM3) compared with

the GCM (HadCM3) shown in Fig. 6c (Indus) and Fig. 6d

(Ganges–Brahmaputra). The RCMs are also able to repro-

duce the inter-annual variability of the region although they

underestimate the magnitude of the variation (Kumar et al.,

2013). The GCMs in the AR4 ensemble tend to exhibit cold

and wet biases compared to observations both globally (No-

hara et al., 2006) and for South Asia (Christensen et al.,

2007). Although these are generally reduced in the RCM

simulations there is a cold bias in the RCM that is proba-

bly carried over from the larger bias in the GCMs (Mathison

et al., 2013; Kumar et al., 2013).

The remaining analysis focusses on the downscaled sim-

ulations of HadCM3, ECHAM5 and ERAint using the

HadRM3 RCM. The RCM simulations shown in Fig. 6 ap-

pear to overestimate the seasonal cycle of total precipitation

compared with the APHRODITE observations; this is high-

lighted by the annual mean of the total precipitation shown

in Fig. 5. However, given the limitations of the observa-

Figure 3. The spatial distribution of the seasonal mean total pre-

cipitation for the monsoon period (June, July, August, September)

for the HadCM3 GCM (a), ERAint (b), APHRODITE observa-

tions (c) and the three HadRM3 simulations: HadRM3-ERAint (d),

HadRM3-HadCM3 (e) and HadRM3-ECHAM5 (f).

tions at high elevations discussed in Sect. 2.3.1 we compare

HadCM3 and ECHAM5 against an ERAint simulation. The

annual mean (Fig. 5) and the monthly climatology (Fig. 6)

show that, for these catchments, the ERAint simulation lies

between the two HighNoon ensemble members for much of

the year. However, during peak periods of precipitation the

magnitude of total precipitation for ERAint is larger.

The seasonal cycles of total precipitation are distinctly dif-

ferent between the basins shown. The Indus basin (Fig. 6a),

indicates two periods of precipitation: one smaller peak be-

tween January and May and another larger one between July

and September. The timings of the largest peaks compare

well; however, the smaller peak occur later than both ERAint

and APHRODITE for ECHAM5 and HadCM3. The magni-

tude of the peaks in precipitation in the APHRODITE ob-

servations are consistently lower throughout the year than

the simulations. The magnitude of the ERAint total precip-

itation is typically the largest while the ECHAM5 simula-

tion is the lowest and closest to the APHRODITE observa-

tions. HadCM3 is between ECHAM5 and ERAint for most

of the year. In contrast the Ganges–Brahmaputra catchment

(Fig. 6b) has one strong peak between July and September.
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Figure 4. The outline of the basins within the TRIP model; Indus (a) and Ganges–Brahmaputra (b).
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Figure 5. Annual mean total precipitation for the Indus (a) and Ganges–Brahmaputra (b) catchments for each model run (HadCM3 – red,

ECHAM5 – blue, ERAint – cyan lines) plotted against APHRODITE observations (black line). Paler observations are annual averages and

darker lines are a 5-year rolling smoothed average.

In general this seasonal cycle is captured reasonably well by

the simulations, both in terms of magnitude and timing of

the highest period of precipitation. However, there is a ten-

dency for the simulations to overestimate rainfall between

January and June compared to the observations, thus length-

ening the wet season (Mathison et al., 2013). Mathison et al.

(2013) also showed that in these simulations, the region of

maximum precipitation along the Himalayan foothills is dis-

placed slightly to the north of that shown in the observations.

One explanation for this could be that the peak in total pre-

cipitation is due to the distribution of observations already

discussed. Alternatively, it could be due to the model resolu-

tion, which may still be too coarse to adequately capture the

influence of the orography on the region of maximum precip-

itation. The downscaled ERAint simulation also indicates a

higher total precipitation for January–May that is within the

range of uncertainty of the GCM driven simulations. How-

ever, for the remainder of the monsoon period, ERAint has a

higher total precipitation than the GCM driven simulations.

Figure 3d illustrates this, showing a slightly larger and more

intense area of maximum rainfall over the eastern Himalayas

for the downscaled ERAint simulation than shown in the

other RCM simulations (Fig. 3e and f) or APHRODITE

(Fig. 3c).

3.2 Present-day modelled river flows

In this section we compare present-day modelled river flows

with observations and a downscaled ERAint simulation, us-

ing annual average river flows (see Fig. 8) and monthly cli-
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(d) Ganges/Brahmaputra
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Figure 6. Seasonal cycle of total precipitation for the Indus (a, c) and Ganges–Brahmaputra (b, d) catchments. The RCM simulations

are shown in (a) and (b) (HadCM3 – red, ECHAM5 – blue, ERAint – cyan lines). A comparison of the HadCM3 GCM (cyan line) and

HadCM3-HadRM3 (red line) seasonal cycles are shown in (c) and (d). APHRODITE observations are also shown (black line) on all plots.

matologies (see Fig. 9). It is clear from Fig. 8 that observed

river-flow data are generally limited, which makes statisti-

cal analysis of the observations difficult. River-flow data for

this region are considered sensitive and is therefore not read-

ily available particularly for the present day. For each of

the gauges shown here, there are generally several complete

years of data but often the time the data collected pre-dates

the start of the model run. The ERAint simulation is also

shown (cyan line-ERAint) to provide a benchmark in the ab-

sence of well-constrained observations (see Sect. 3.1). The

comparison between the model and observations shown in

Figs. 8 and 9 is therefore to establish if the model and obser-

vations are comparable in terms of the average seasonal cycle

and mean river-flow rate without over-interpreting how well

they replicate the observations. The Tehri dam on the Bhagi-

rathi River is not a GRDC gauge; therefore, observations are

not shown. Observations for this gauge were received via per-

sonal communication from the Tehri dam operator and there-

fore could not be adequately referenced.

The Kotri gauge on the Indus (Fig. 9a) and the Yangcun

gauge on the Brahmaputra (Fig. 9k) are the only two gauges

where the modelled river flow is higher than the observations

and not within the estimated variability (1.5 SD) of the re-

gion. The ERAint simulation is also outside the estimated

variability (1.5 SD) for the Benighat gauge on the Karnali

River (Fig. 9e). The differences in these gauges are also re-
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Figure 7. Annual mean evaporation for the Indus (a) and Ganges–Brahmaputra (b) catchments for each model run (HadCM3 – red, ECHAM5

– blue, ERAint – cyan lines) from 1971 to 2100. Paler lines are annual averages and darker lines are a 5-year rolling smoothed average.

flected in the annual mean river flows (Fig. 8) for these river

gauges, which are higher than observed. The high bias in

modelled river flow at the Kotri gauge could be due to the

extraction of water, which is not included in the model. The

Indus has the largest irrigation scheme in the world and a

semi-arid climate (Immerzeel et al., 2015), which means the

extraction rate for this basin is large (Biemans et al., 2013).

This gauge is also located relatively close to the river mouth

to the west of the Himalayas (see Fig. 2 and Table 1); there-

fore, the river flows are less likely to be affected by the ASM

and more likely to be affected by meltwater from winter pre-

cipitation. The Yangcun gauge is a more upstream gauge and

the differences between the model and observations for this

gauge are more likely to be related to the precipitation dis-

tribution. Figure 3 shows a region of intense precipitation in

the simulations (Fig. 3d–f) for the ASM period close to this

gauge. The APHRODITE data (Fig. 3c) also show a region

of higher rainfall although this is not as large as that shown

for the simulations. This could be having a direct effect on

the river flow.

The other two gauges on the Brahmaputra are located

downstream of the Yangcun gauge: the Pandu (Fig. 9l) and

Bahadurabad (Fig. 9j). At these two gauges, the seasonal

cycle of river flow has a very broad peak particularly in

the modelled river flows compared to the other gauges. In

the simulations the snowfall climatology for the Ganges–

Brahmaputra basin (not shown) has a similar seasonal cycle

to that of the river flow for the Bahadurabad and the Pandu

gauges. It is therefore likely that the broad peak in river

flow is related to the broad peak in snowfall and subsequent

snowmelt. The Pandu gauge is also one of only two gauges

where the modelled river flow is less than the observations

for at least part of the year, the other being the Devghat gauge

on the Narayani River (Fig. 9g). Both of these gauges are lo-

cated in the Himalayan foothills close to the region of sim-

ulated maximum total precipitation. If the simulations put

the location of this maximum below these gauges this could

cause the river flows at the gauges to be lower than observed.

The river flow on the main trunk of the Ganges at the Farakka

Barrage (shown in Fig. 9i) is a reasonable approximation to

the observations in terms of magnitude; however, the timing

of the peak flow seems to be later in the models. It could

be argued this also happens in some of the other gauges al-

though it is more noticeable for the Farakka Barrage. All

the gauges shown here are for glacierized river basins. Snow

fields and snowmelt are represented in the simulations in this

analysis and will therefore replicate some aspects of melt af-

fecting river flow. However, glacial melt is not explicitly rep-

resented in the RCM used for these simulations. Including

glacial processes specifically could act to reduce runoff be-

cause more snow is stored as ice or increase runoff where

there is an increased melting (Bolch et al., 2012). Therefore,

including glacial processes could be important for the timing

and magnitude of the maximum and minimum river flows for

these catchments.

3.3 Future river flows

In this section we consider the future HNRCM simulations.

Figure 5 highlights the variability in the future projections of

total precipitation for South Asia between basins. In these

simulations the Ganges–Brahmaputra catchment shows an

increasing trend in total precipitation and there is consid-

erable variation between the simulations (Fig. 5b). The In-

dus basin (Fig. 5a), however, has a much flatter trajectory to

2100 and the simulations are more similar. The annual time
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Figure 8. Time series of river flows showing available observations (black) and RCM runs (HadCM3 – red, ECHAM5 – blue, ERAint – cyan

lines) from 1971 to 2100. Paler lines are annual averages and darker lines are a 20-year rolling smoothed average.
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Figure 9. Seasonal cycle of river flow at individual river gauges; observed (black solid line) and for each of the RCMs (HadCM3 – red,

ECHAM5 – blue, ERAint – cyan lines) from 1971 to 2000; with shaded regions showing 1.5 SD from the mean for the two simulations for

the same period.
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series of evaporation (Fig. 7) over these catchments shows

a similar picture, with an increasing trend for the Ganges–

Brahmaputra basin (Fig. 7b) but no real trend for the Indus

(Fig. 7a). The annual mean runoff efficiency (not shown),

defined here as the ratio of annual runoff (streamflow per

unit area) to annual precipitation, shows no real trend for ei-

ther basin. The trends in river flow (see Fig. 8) vary between

gauges, although none indicate decreasing river flows. There

is an upward trend in river flows at some of the gauges, in

particular, the Narayani-Devghat (Fig. 8g), Arun-Turkeghat

(Fig. 8h) and Ganges-Farakka (Fig. 8i). These gauges sug-

gest an upward trend toward the 2100s that actually repre-

sents a doubling of the river-flow rate. The increase in river

flow for the Narayani-Devghat gauge (Fig. 8g) are consistent

with analysis by Shrestha and Aryal (2011) using a hydro-

logical model for the Narayani basin. Ganges-Farakka is the

most downstream gauge in the Ganges–Brahmaputra basin

in this river-flow analysis, therefore providing an approxima-

tion for the whole Ganges basin. These simulations show an

increase in precipitation for the Ganges–Brahmaputra basin

of approximately 20 % (see Fig. 5) and an increase of ap-

proximately 10 % in evaporation (see Fig. 7), over the course

of the century. This suggests the changes in runoff over the

Ganges catchment are predominantly driven by precipita-

tion on the annual scale. However, regional analysis by Jha-

jharia et al. (2012) covering the humid north-eastern part of

India and a global analysis by McVicar et al. (2012) sug-

gested there has been a decline in the evaporation caused by

lighter surface winds and reduced radiation. A future reduc-

tion in evaporation could also contribute to future increases

in runoff. Analysis using a conceptual hydrological model

by Singh and Bengtsson (2005) suggested that the type of

precipitation being received at different elevations and the

changes in melt and evaporation from snowpacks in a warmer

climate could also be important for changes in runoff.

3.3.1 Climatology analysis

In this section we use climatologies to compare future river

flows with the present-day inter-annual variability (defined

in Sect. 2.3.1). South Asia is a very variable region, yet these

models suggest the future mean river flow could lie out-

side the present-day variability for peak flows for some of

the gauges in this study. This could have important impli-

cations for water resources for the region. The gauges that

show an increase in maximum river flows (see Fig. 10) are

mainly those in the middle of the Himalayan arc (see Fig. 2).

The seasonal cycle for the western most gauges (located in

the Indus basin) and the eastern most gauges (located in the

Brahmaputra basin) are typically still within the range of

present-day variability. This could be due to the changes in

the influence on river flow from west to east becoming more

influenced by the ASM and less by western disturbances,

with basins in the centre of the Himalayas and to the north

influenced by both phenomena. Figure 10 also suggests that

the maximum river flows still occur mainly during the ASM

for many of the gauges shown.

3.3.2 High and low flow analysis

The analysis of the high and low flows is of particular impor-

tance to water resources and future availability, therefore in

this section we calculate the distributions of the river flows

for each of the gauges (see Sect. 2.3.1). These are shown in

the form of pdfs in Fig. 11 for the 1971–2000, 2050s and

the 2080s. Figure 11 illustrates how the lowest flows domi-

nate the distributions for each of the three periods. In most

of the gauges 1971–2000 period has the highest frequency of

the lowest flows, the curves then tend to flatten in the mid-

dle of the distribution before tailing off toward zero for the

highest flows. The two future periods also follow a similar

trajectory, although in general there is a reduction in the fre-

quency of the lowest flows and an increase in the magnitude

of the highest flows for all of the gauges and both simulations

towards 2100.

The Yangcun gauge on the Brahmaputra (Fig. 11k) shows

the least change of all the gauges between the 1971–2000 pe-

riod, future periods and simulations. The distributions for the

gauges downstream of Yangcun, the Pandu (Fig. 11l) and the

Bahadurabad (Fig. 11j), are notable for their differences from

all the other gauges. All the other gauges shown have a sin-

gle peak toward the lower end of the river-flow distribution.

The Pandu and Bahadurabad gauges have two distinct peaks

in frequency with a second peak occurring toward the mid-

dle of the distribution, where the distribution for most other

gauges flattens out. This is consistent with the broader peak

in the 30-year mean seasonal cycle shown for these gauges

in Fig. 10 and is probably similarly explained by snowmelt

(see Sect. 3.2). In some of the other gauges there is a small

increase in the middle of the river flow distribution but this

tends to be smaller and restricted to the two future periods,

e.g. the two Karnali River gauges (Fig. 11e and f).

3.3.3 Threshold analysis

The pdfs shown in Fig. 11 and described in Sect. 3.3.2 sug-

gest future changes in the lower and upper ends of the river-

flow distribution. In this section we consider these parts of

the distribution in order to confirm this pattern. We com-

pare the two future periods (2050s and 2080s) against the

1971–2000 period explicitly using thresholds defined by the

10th and 90th percentiles for this present-day period for each

river gauge. Graphical examples from the results of this anal-

ysis are shown for all three periods – historical (a), 2050s (b),

2080s (c) – for the Farakka Barrage on the Ganges in Figs. 12

and 13. In Fig. 12 the number of months where river flow is

below the present-day 10th percentile reduces in each of the

future decades. However, for flows greater than the present-

day 90th percentile there is an increase in each of the future

decades (Fig. 13). Table 2 illustrates that the patterns shown
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Figure 10. Seasonal cycle of river flow in each of the RCMs (HadCM3 – red, ECHAM5 – blue) for the two future periods: 2050s (solid

lines) and 2080s (dashed lines), with shaded regions showing 1.5 SD from the mean for 1971–2000 for each river gauge.
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Figure 11. The distribution of the river flow in the HadCM3 and ECHAM5 (HadCM3 – red, ECHAM5 – blue) runs for three periods:

historical (1971–2000 – solid lines) and two future periods (2050s – dashed lines and 2080s – dotted lines) plotted as a pdf for each river

gauge.
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Figure 12. Comparison of the lowest 10 % of monthly river flows at the Farakka Barrage on the Ganges River against the 10th percentile

for the 1971–2000 period for 1971–2000 (top panel), 2050s (middle panel) and 2080s (bottom panel) for HadCM3 (red triangles) and

ECHAM5 (blue stars). Each star or triangle represents a month within the 30-year period where the value is less than the 10th percentile of

the 1971–2000 period with the total number for each of the simulations given in the top right corner of each plot.

in Figs. 12 and 13 are generally true for almost every other

gauge in the analysis. The Tehri dam (Bhagirathi) is the only

exception of the gauges shown in Table 2, showing an in-

crease of 12 % in the number of incidences where the river

flow is less than the 1971–2000 10th percentile for the 2080s.

This is mainly due to the ECHAM5 model which has a high

number of incidences. The Yangcun gauge (Brahmaputra) is

the only gauge where there is no change in the number of in-

cidences where the river flow is less than the 10th percentile

for 1971–2000 in either of the future periods. This is proba-

bly because the lowest river flows are already very low at this

gauge.

At every gauge there is an increase in the number of in-

cidences where river flows are greater than the 90th per-

centile for 1971–2000 for the two future periods. Several

of the gauges have increases in the number of events above

the 90th percentile for the 1971–2000 period of more than

100 %. This confirms the conclusions drawn visually from

the analysis in Fig. 11 that the general distributions move to-

ward the higher flows for these gauges and simulations.

3.3.4 Decadal percentile analysis

The annual time series shown in Fig. 8 is very variable and

systematic changes throughout the century could be masked

by this variability. The 10th and 90th percentiles for each

decade and each simulation are calculated on the basis that

there are changes in the upper and lower parts of the fu-

ture river-flow distributions. At the lower end of the distribu-

tion, there is little change in the 10th percentile (not shown)

for most of the gauges, probably because of very low flows

at the lowest times of the year. Only the Pandu and Ba-

hadurabad gauges on the Brahmaputra and the Farakka gauge

on the Ganges show a non-zero value for the lowest 10 % of

river flows through to the 2100s. These three gauges indi-

cate a slight increase for the 10th percentile for each decade

through to 2100.
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Figure 13. Comparison of the highest 10 % of monthly river flows at the Farakka Barrage on the Ganges River against the 90th percentile for

the 1971–2000 period for 1971–2000 (top panel), 2050s (middle panel) and 2080s (bottom panel) for HadCM3 (red triangles) and ECHAM5

(blue stars). Each star or triangle represents a month within the 30-year period where the value is greater than the 90th percentile of the

1971–2000 period with the total number for each of the simulations given in the top right corner of each plot.

The 90th percentile values (Fig. 14) are generally much

more variable throughout the century than those for the

10th percentile to the 2100s. We consider the gauges accord-

ing to their location across the Himalayan arc from west to

east (see Fig. 2). The HadCM3 simulation projects an in-

crease in river flows for the most westerly gauges in this

analysis; Attock and Kotri gauges located on the Indus (see

Fig. 14a and b) and the Chenab-Panjnad gauge (see Fig. 14c).

ECHAM5, on the other hand, shows a much flatter trajectory

for these gauges. This may be explained by the HadCM3

simulation depicting an increase in the occurrence of west-

ern disturbances and an increase in total snowfall which is

not simulated by ECHAM5 (Ridley et al., 2013).

The gauges located toward the middle of the Himalayan

arc generally show increases across the decades to 2100 in

both models; these are the Bhagirathi-Tehri (Fig. 14d), both

Karnali River gauges (Benighat – Fig. 14e and Chisapani –

Fig. 14f), Narayani-Devghat and Arun-Turkeghat (Fig. 14g

and h). There is very close agreement between the two simu-

lations for the Narayani-Devghat, Arun-Turkeghat (Fig. 14g

and h) and Bhagirathi-Tehri (Fig. 14d) gauges, with the for-

mer two showing less variability between decades than the

others in the analysis. The Karnali-Benighat gauge (Fig. 14e)

also has less variability between the decades; however, there

is a systematic difference between the two simulations that

remains fairly constant across the decades. From the subset

of gauges in this analysis that are the most central on the Hi-

malayan arc, the Karnali-Chisapani gauge (Fig. 14f) has the

largest variability between simulations and decades. How-

ever, this gauge still shows an increase overall in both simu-

lations with a steeper increase for HadCM3 than ECHAM5.

The closer agreement between simulations at these more cen-

tral gauges may be due to the reducing influence of the west-

ern disturbances in the HadCM3 simulation from west to east

across the Himalayas, therefore resulting in smaller differ-

ences between the two simulations.
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Table 2. Table showing the average percentage change for the two

models in the number of times the modelled river flow is less than

the 10th percentile and greater than the 90th percentile of the 1970–

2000 period for the 2050s and 2080s future periods.

River Gauge < 10th percentile > 90th percentile

% change % change

2050s 2080s 2050s 2080s

Indus Kotri −55.4 −89.2 60.8 55.4

Indus Attock −70.3 −95.9 70.3 81.1

Karnali River Benighat −39.2 −73.0 63.5 81.1

Karnali River Chisapani −27.0 −56.8 60.8 79.7

Narayani Devghat −21.6 −54.1 75.7 110.8

Arun Turkeghat −63.5 −90.5 66.2 116.2

Brahmaputra Yangcun 0 0 20.3 36.5

Brahmaputra Pandu −59.5 −79.7 47.3 113.5

Brahmaputra Bahadurabad −48.6 −64.9 67.6 114.9

Ganges Farakka −36.5 −52.7 68.9 102.7

Bhagirathi Tehri dam −4.1 12.2∗ 13.5 41.9

Chenab Panjnad −58.1 −83.8 43.2 50.0

∗ This value is the only positive value in the table.

The Farakka-Ganges gauge (Fig. 14i) and two of the

Brahmaputra gauges – Bahadurabad (Fig. 14j) and Pandu

(Fig. 14l) – represent three of the most easterly river gauges

in the analysis. These gauges show an increase in both simu-

lations through to the 2100s, in this case more pronounced in

ECHAM5 than HadCM3 for these two Brahmaputra gauges.

There is much closer agreement between the two simula-

tions at the Farakka-Ganges gauge (Fig. 14i), which is lo-

cated slightly further west than the two Brahmaputra gauges.

The other Brahmaputra gauge, the Yangcun (Fig. 14k) is very

variable through the century, there is a period with consecu-

tive decades of increasing river flows in the middle of the

century but over the whole century neither model shows a

consistent change.

This analysis shows that neither simulation is consistently

showing a systematic increase in the 90th percentile of river

flows across all the gauges. Instead it highlights the changing

conditions and the different behaviour of the two simulations

across the Himalayan arc.

4 Implications of changes in future river flows

In this section we consider the implications of the projected

future changes in river flows for South Asia on water re-

sources. We highlight the broader challenges facing the re-

gion and where the current RCMs need development to rep-

resent key processes for this region. The key points from this

discussion are summarised in Table 3. In the present day,

water resources in South Asia are complicated, precariously

balanced between excess and shortage. Parts of South Asia

receive some of the largest volumes of precipitation in the

world and are therefore at frequent risk of flooding and yet

others regularly endure water stress. The complexity is in-

creased by the competition between states and countries for

resources from rivers that flow large distances crossing state

and country borders, each with their own demands on re-

source. There is a considerable gap between the amount of

water resources flowing through South Asia and the actual

usable amount (Aggarwal et al., 2012), for example the total

flow for the Brahmaputra basin is approximately 629 km3 of

which only 24 km3 is usable (Kumar et al., 2005). There is

therefore huge potential for improvements in the efficiency of

systems for irrigation and domestic water supply that could

ease pressures on water resources, currently and predicted,

as demand increases.

In the last 50 years there have already been efficiency im-

provements, such as development of irrigation systems and

use of high-yielding water efficient crop varieties. These im-

provements have fuelled the rapid development in agricul-

ture across South Asia making the region more self-sustained

and alleviating poverty (Kumar et al., 2005). However, these

advances have also had a large impact on the regions river

ecosystems resulting in habitat loss, reduced biodiversity

(Sarkar et al., 2012) and water pollution (Vörösmarty et al.,

2010). Historically arbitrary thresholds based on a percent-

age of the annual mean flow have been used to estimate min-

imum flows, but these simplistic estimates do not take ac-

count of the flow variability that is crucial for sustaining river

ecosystems (Arthington et al., 2006; Smakhtin et al., 2006),

referred to as environmental flows. Environmental flows are

defined by Smakhtin and Anputhas (2006) as the ecologically

acceptable flow regime designed to maintain a river in an

agreed or predetermined state. The variability in river flows

through the year have important ecological significance; for

example low flows are important for algae control and there-

fore maintaining water quality. High flows are important for

wetland flooding and preserving the river channel. When

considering the implications of future changes in climate on

river flows and therefore surface water resources, estimates

of flow variability and minimum flows are an important con-

sideration. However these are not easily quantified in general

terms with many methods requiring calibration for applica-

tions to different regions and basins. In our simulations there

is an intensification of the seasonal cycle and therefore an

increase in the flow variability and a reduction in the occur-

rence of the lowest flows. These changes could have impli-

cations for the biodiversity of these catchments.

In India the domestic requirement for water is the high-

est priority but is only 5 % of the total demand. Irrigation

is the second highest priority accounting for a much greater

proportion, approximately 80 % of India’s total demand for

water. A significant proportion of domestic and irrigation re-

source comes from both ground and surface water. Biemans

et al. (2013) studied future water resources for food produc-

tion using the LPJmL (Lund-Potsdam-Jena managed Land)

model and the HNRCMS. LPJmL also simulates groundwa-

ter extractions (Biemans et al., 2013) these are thought to be

important for the Indus and parts of the Ganges but not the
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Figure 14. The 90th percentile of river flow for each decade for HadCM3 (red triangles) and ECHAM5 (blue circles) for each river gauge.
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Table 3. Table of implications of changes in water resources.

Types of change Implications for water resource Adaptation options Other issues

Large annual Abundance some years and Building storage capacity Type of water storage is

variability scarcity in others make e.g. rainwater harvesting. important e.g. reservoirs/dams

it difficult to plan budgets Improvement of irrigations systems. have both political

for different users. Development of water efficient, and ecological implications.

high-yielding crop varieties. Developing new crops takes time.

Changes in Increases in peak flows could be Improving river channel capacity. Flood protection levels

peak flow – timing positive for irrigation and Diverting excess water to a different valley. do not match demographic

and magnitude domestic supply but could increase Storing the excess water for low flow periods trends so vulnerability

the risk of flooding. e.g. through rainwater harvesting. to flooding remains high

Peak flows occurring later and/or Improving drainage and water recycling. in this region

decreases in peak flows could reduce Adopting varieties of crops that grow (Gupta et al., 2003).

availability of water for irrigation when water for irrigation is more Market development for

at crucial crop development stages readily available new crops takes time

negatively impacting yields.

Changes in low Increases in the magnitude of the low Adaptations to avoid flooding during

flows – timing flows could be positive for irrigation peak flow periods could provide resources

and magnitude and domestic supply. during low flow periods.

Decreases could mean less resources Development of water efficient,

available for irrigation high-yielding

leading to reduced yields crop varieties

Brahmaputra. The LPJmL simulated extraction varies con-

siderably between basins; the largest occurring in the Indus

(343 km3 yr−1) followed by the Ganges (281 km3 yr−1) and

Brahmaputra (45 km3 yr−1). The Brahmaputra has the small-

est percentage of irrigated crop production (approximately

40 %) followed by the Ganges (less than 75 %) and the Indus

where more than 90 % of crop production is on irrigated land.

The Indus has the largest proportion of water sourced from

rivers and lakes of the three basins and the largest proportion

of the river flow is glacial melt (Immerzeel et al., 2010).

Wiltshire et al. (2013a) use a perturbed physics ensemble

of HadCM3 GCM simulations (Murphy et al., 2004) and find

an increase in water resources for South Asia at the annual

timescale due to climate change. The analysis shown here

shows a similar result with increases in river flow, particu-

larly the magnitudes of the higher river flows at these gauges,

in some cases above the range of variability used for this

analysis (1.5 SD). However, the analysis shown here on the

monthly timescale, also highlights that these increases in re-

sources tend to occur during the ASM, when river flow is

at its maximum. This could mean that the benefits of an in-

crease in water resources may not be realized due to the tim-

ing of this increase within the year. Although these projected

changes in river flow are not critical for water resources they

could still be beneficial where there is the capacity to store

the additional flow for use during periods of low flow. Ad-

ditional water storage capacity for example through rain-

water harvesting, could greatly increase the useable water

resources for the Ganges–Brahmaputra catchments (Kumar

et al., 2005) and potentially alleviate the increased risk of

flooding during the ASM when rainfall is most persistent and

rivers are already at their peak flow. South Asia, even in the

current climate, is particularly susceptible to flooding due to

the high temporal and spatial variability of rainfall of the re-

gion. It is estimated that approximately 20 % of Bangladesh

floods annually (Mirza, 2002). Several studies have high-

lighted increases in both the extremes (Sharma, 2012; Rajee-

van et al., 2008; Goswami et al., 2006; Joshi and Rajeevan,

2006) and the variability (Gupta et al., 2005) of precipitation

in recent years that cause extreme rainfall events resulting in

catastrophic levels of river flooding. Over 30 million people

in India alone are affected by floods and more than 1500 lives

are lost each year (Gupta et al., 2003), the economic cost of

flooding is also considerable with the cumulative flood re-

lated losses estimated to be of the order of USD 16 billion

between 1978 and 2006 (Singh and Kumar, 2013).

The timing of the peak flows of major rivers in this region

is also very important in terms of flooding. In 1998 the peak

flows of the Ganges and the Brahmaputra rivers occurred

within 2 days of each other resulting in devastating flood-

ing across the entire central region of Bangladesh. Approxi-

mately 70 % of the country was inundated, the flood waters

then remained above danger levels for more than 60 days

(Mirza, 2002). This event caused extensive loss of life and

livelihood in terms of damaged crops, fisheries and property

and the slow recedence of flood waters hindered the relief

operations and recovery in the region. This analysis does not

suggest any change to the timing of the peak flows, only the

magnitude. However, given the high probability of two rivers

in this region having coincident peak flows in any given year

(Mirza, 2002) and the likelihood that severe flooding will re-

sult, an increase in the magnitude of the peak could still be
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significant. Flooding can have a large impact on crops, for

example in Bangladesh over 30 % of the total flood related

damages are due to the loss of crops. The estimated crop

damage from the 1998 floods was estimated to be 3 million t

(Gain et al., 2013). The slow receding of flood water can also

mean the ground is not in a suitable condition to sow the

next crop, restricting the growing time and potentially affect-

ing crop yields for the following year. On the other hand a

limited amount of flooding could also be a benefit, partic-

ularly for rice crops. Inundation of clear water can benefit

crop yield, due to the fertilization effect of nitrogen produc-

ing blue-green algae in the water (Mirza et al., 2003).

In our simulations the reduced occurrence of the lowest

flows could translate into an increase in the surface water

resource in this region especially during periods when the

river flows are traditionally very low. This could mean that

the current and increasing pressure on groundwater (Rodell

et al., 2009) may be alleviated in future years. Alternatively

increases in the lowest flows may enable adaptation to a

changing climate and the modification of irrigation practises.

Current projections of future climate suggest that tempera-

tures could also increase for this region (Cruz et al., 2007).

Increasing temperatures poses a threat to crop yields of a dif-

ferent kind because this is a region where temperatures are

already at a physiological maxima for some crops (Gornall

et al., 2010). Rice yield, for example, is adversely affected

by temperatures above 35 ◦C at the critical flowering stage of

its development (Yoshida, 1981). Wheat yields could also be

affected by rising temperatures, with estimated losses of 4–

5 million t per degree of temperature rise through the growing

period (Aggarwal et al., 2012). Additional water resources

for irrigation at previously low flow times of the year could

allow sowing to take place at a different time of the year in

order to avoid the highest temperatures, thereby reducing the

likelihood of crop failure. However, with increasing variabil-

ity and extremes, a potential feature of the future climate for

this region (Hijioka et al., 2014), there is also the increased

risk of longer periods with below average rainfall and poten-

tially more incidences of drought. This could lead to addi-

tional demand for water for irrigation to prevent crops be-

coming water stressed (Aggarwal et al., 2012). There may

also be increases in demand from other sources other than

agriculture, for example the increasing population (United

Nations, 2013) or the reduced availability of groundwater of

an acceptable quality for domestic use (Gregory et al., 2005).

Any of these factors, either individually or combined, could

effectively cancel out any or all increases in resource from

increased river flow due to climate change.

In addition there are a number of processes missing from

the models used for these simulations that could change the

sign of the projected changes. There is no irrigation included

in these simulations, which could be important particularly

on the basin scale. The impacts of extensive irrigation on

the atmosphere are complex but could have a positive impact

on water availability (Harding et al., 2013) due to evapora-

tion and water being recycled within the basin. Tuinenburg

et al. (2014) estimated that up to 35 % of additional evapo-

ration is recycled within the Ganges basin. Therefore, this

aspect of the regional water cycle is not accounted for in

these simulations. There is also no representation of glaciers

that could act to increase or reduce river flows depending on

the occurrence of negative or positive mass balance, respec-

tively. In these simulations snowmelt is represented; how-

ever, representing glacial processes as snowmelt could act

to enhance the seasonal cycle in the simulated river flows

for both present-day and future projections as snow melts

more readily than ice. These simulations also do not explic-

itly include groundwater, primarily focussing on river flows.

Groundwater is a highly exploited part of water resources for

South Asia. Representation of this would give a more com-

plete picture of the total water resources for this region.

5 Conclusions

We present the first 25 km resolution regional climate pro-

jections of river flow for the South Asia region. A sub-

selection of the HNRCMs are used to provide runoff to a

river-routing model in order to provide river-flow rate, which

can be compared directly with ERAInt and any available

river gauge data for the South Asia region. This analysis

focusses on the major South Asia river basins that origi-

nate in the glaciated Hindu–Kush Karakoram Himalayas: the

Ganges–Brahmaputra and the Indus. The aim of this analy-

sis is firstly to understand the river flows in the ECHAM5

and HadCM3 simulations and secondly examine how useful

they are for understanding the changes in water resources for

South Asia. We also consider what the projected changes in

river flow to the 2100s might mean for water resources across

the Himalaya region.

The driving GCMs (ECHAM5 and HadCM3) have pre-

viously been shown to capture a range of temperatures and

variability in precipitation similar to the AR4 ensemble for

the much larger domain of Asia (Christensen et al., 2007).

However, using just two ensemble members cannot capture

the full range of these larger ensembles. In this analysis the

seasonal cycle of precipitation, a key influence on river flows,

is captured reasonably well for the downscaled GCMs com-

pared to both observations and the downscaled ERAint sim-

ulation. Although observed precipitation is lower than in the

model the underestimation inherent in precipitation observa-

tions at higher elevations is likely to be an important factor

for this analysis, which includes the high Himalayas.

A number of GRDC gauge stations (GRDC, 2014), se-

lected to capture the range of conditions across the Hi-

malayan arc and sample the major river basins, provide ob-

servations of river flow for comparison against the HNRCM

simulations. The lack of recent river flow data limited the

gauges that could be selected for analysis. In the absence of

robust observations we use a downscaled ERAint simulation
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in addition to the available observations to provide a useful

benchmark against which to compare the downscaled GCM

simulations. In general there is a tendency for overestima-

tion of river-flow rate across the selected gauges compared

with GRDC observations; however, comparison against the

ERAint simulation is more mixed with some gauges show-

ing higher and others with lower river flows than ERAInt. In

general most of the simulations broadly agree with observa-

tions and ERAint to within the range of natural variability

(of 1.5 SD) and agree on the periods of the highest and low-

est river flow. Therefore, indicating that the RCM is able to

capture the main features of both the climate and hydrology

of this region for the present day.

The future projections indicate an increase in surface wa-

ter resources, with river-flow rates at some of the gauges al-

most doubled by the end of the century. These increases in

river flow occur for the gauges in the Ganges–Brahmaputra

basin, which also shows an increasing trend in both evapo-

ration and precipitation. Therefore, the changes in river flow

are likely to be mainly driven by precipitation on the annual

scale which more than counters the evaporation caused by

increasing temperatures in the model. This is consistent with

other analyses of precipitation that also use the A1B climate

scenario (Nepal and Shrestha, 2015), which is a useful result.

The trajectories of the annual average river flow, evaporation

and precipitation for the Indus are much flatter, showing little

or no trend.

The increases in the annual mean river flows are reflected

in the seasonal cycles of river flow for the two future periods

(2050s and 2080s), which indicate that most of the changes

occur during peak flow periods. Some of the gauges toward

the middle of the Himalayan arc, show changes above the

range of present-day natural variability. This could be due to

the increasing influence of the ASM and reducing influence

of western disturbances from west to east having an addi-

tive effect. The gauges located furthest west and east in this

analysis lie within the present-day natural variability. There

were also differences between the two simulations across the

Himalayan arc with HadCM3 suggesting increases in river

flow at the upper end of the distribution for western gauges

that was not evident in ECHAM5. The analysis shown here

does not suggest a systematic change in the models for the

timing of the maximum and minimum river flows relative to

the present day, suggesting an over all increase in water re-

sources at the top and bottom of the distribution. This has

positive and negative implications with potentially more re-

sources during usually water scarce periods. However, there

are also implications in terms of increased future flood risk

during periods where the river flow is particularly high. In-

creases in maximum flows for rivers in this region could be

important in terms of loss of life, livelihoods, particularly

agriculture and damage to infrastructure.

While this analysis suggests increasing surface water re-

sources due to climate change, there are a number of other

factors that could affect this result, both in terms of this

analysis and uncertainties surrounding the region itself. The

South Asia region is changing rapidly; therefore, other fac-

tors could have a large effect on water resources for this

region. A rising population, expansion of industry (other

than agriculture) and the continued depletion of groundwa-

ter could change the demand for surface water resource from

other parts of the South Asia economy. In addition increasing

variability of an already changeable climate could lead to ex-

tended periods throughout the year of rainfall below the an-

nual average, leading to an increase in demand for irrigation

resource. In terms of this analysis, this is only one RCM and

another RCM could produce a different result. Also there are

missing hydrological processes in the RCM and river-flow

model that could impact the river flows directly. The RCM

and river-flow model do not include abstraction and irriga-

tion, groundwater recharge or explicitly include glacial pro-

cesses and their contribution to river flow. Including glacial

processes in the form of a glacier model together with river

routing within the land-surface representation will be useful

to establish if the contribution from glaciers changes the tim-

ing and/or magnitude of both the lowest and highest flows in

these gauges. Likewise including representation of water ex-

traction (both from rivers and groundwater) particularly for

irrigation, the biggest user of water in the region, will help

to provide a more complete picture of the demand for water

resources for the South Asia region. Including irrigation and

therefore the associated evaporation will capture part of the

water cycle not possible with the current model and maintain

the regional water balance. Including representation of these

processes in the RCM or river-flow model would improve the

robustness of the future projections of water resources and

further our understanding of the water balance for this re-

gion. These processes could have a large impact on the water

balance in the model potentially changing the signal of the

projected changes in river flow. Understanding the interac-

tions between availability of water resources, irrigation and

food production for this region by using a more integrated ap-

proach, such as that used in Biemans et al. (2013), may also

help with understanding how pressures on resources could

change with time. In support of this work and others, there is

also a need for good-quality observations of both precipita-

tion and river flow available for long enough time periods to

conduct robust water resource assessments for this region.

Acknowledgements. The research leading to these results has

received funding from the European Union Seventh Framework

Programme FP7/2007–2013 under grant agreement no. 603864.

Camilla Mathison, Pete Falloon and Andy Wiltshire were supported

by the Joint UK DECC/Defra Met Office Hadley Centre Climate

Programme (GA01101). Thanks to Neil Kaye for his GIS expertise.

Edited by: B. Schaefli

Hydrol. Earth Syst. Sci., 19, 4783–4810, 2015 www.hydrol-earth-syst-sci.net/19/4783/2015/



C. Mathison et al.: South Asia river-flow projections and their implications for water resources 4807

References

Aggarwal, P., Talukdar, K., and Mall, R.: Potential yields of rice-

wheat system in the Indo-Gangetic plains of India, Rice-Wheat

consortium for the Indo-Gangetic plains, New Delhi, India,

16 pp., 2000.

Aggarwal, P., Palanisami, K., Khanna, M., and Kakumanu, K.: Cli-

mate change and food security of India: adaptation strategies for

the irrigation sector, World Agriculture, 3, 20–26, 2012.

Akhtar, M., Ahmad, N., and Booij, M.: The impact of cli-

mate change on the water resources of Hindukush-Karakorum-

Himalaya region under different glacier coverage scenarios,

J. Hydrol., 355, 148–163, doi:10.1016/j.jhydrol.2008.03.015,

2008.

Andermann, C., Bonnet, S., and Gloaguen, R.: Evaluation of precip-

itation data sets along the Himalayan front, Geochem. Geophy.

Geosy., 12, Q07023, doi:10.1029/2011GC003513, 2011.

Annamalai, H., Hamilton, K., and Sperber, K.: The South

Asian summer monsoon and its relationship with ENSO

in the IPCC AR4 simulations, J. Climate, 20, 1071–1092,

doi:10.1175/JCLI4035.1, 2007.

Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams,

J. R.: Large area hydrologic modeling and assessment Part I:

Model development, J. Am. Water Resour. Assoc., 34, 73–89,

doi:10.1111/j.1752-1688.1998.tb05961.x, 1998.

Arthington, A. H., Bunn, S. E., Poff, N. L., and Naiman, R. J.: The

challenge of providing environmental flow rules to sustain river

ecosystems, Ecol. Appl., 16, 1311–1318, doi:10.1890/1051-

0761(2006)016[1311:TCOPEF]2.0.CO;2, 2006.

Bajracharya, S. and Shrestha, B.: The Status of Glaciers in the

Hindu Kush-Himalayan Region, ICIMOD, Kathmandu, http://

lib.icimod.org/record/9419, last access: July 2015, 2011.

Barnett, T., Adam, J., and Lettenmaier, D.: Potential impacts of

a warming climate on water availability in snow-dominated re-

gions, Nature, 438, 303–309, doi:10.1038/nature04141, 2005.

Biemans, H., Speelman, L., Ludwig, F., Moors, E., Wiltshire, A.,

Kumar, P., Gerten, D., and Kabat, P.: Future water resources for

food production in five South Asian river basins and potential

for adaptation – A modeling study, Sci. Total Environ., 468–469,

Supplement, S117–S131, doi:10.1016/j.scitotenv.2013.05.092,

2013.

Bolch, T., Kulkarni, A., Kääb, Huggel, C., Paul, F., Cogley, J. G.,

Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., and

Stoffel, M.: The State and Fate of Himalayan Glaciers, Science,

336, 310–314, doi:10.1126/science.1215828, 2012.

Christensen, J., Hewitson, B., Busuioc, A., Chen, A., Gao, X.,

Held, I., Jones, R., Kolli, R., Kwon, W.-T., Laprise, R.,

na Rueda, V. M., Mearns, L., Meneńdez, C., Räisänen, J.,
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